5 results match your criteria: "Department of Chemistry University of Graz Heinrichstrasse 28[Affiliation]"

Fungal ferulic acid decarboxylases (FDCs) belong to the UbiD-family of enzymes and catalyse the reversible (de)carboxylation of cinnamic acid derivatives through the use of a prenylated flavin cofactor. The latter is synthesised by the flavin prenyltransferase UbiX. Herein, we demonstrate the applicability of FDC/UbiX expressing cells for both isolated enzyme and whole-cell biocatalysis.

View Article and Find Full Text PDF

The biocatalytic asymmetric disproportionation of aldehydes catalyzed by horse liver alcohol dehydrogenase (HLADH) was assessed in detail on a series of racemic 2-arylpropanals. Statistical optimization by means of design of experiments (DoE) allowed the identification of critical interdependencies between several reaction parameters and revealed a specific experimental window for reaching an 'optimal compromise' in the reaction outcome. The biocatalytic system could be applied to a variety of 2-arylpropanals and granted access in a redox-neutral manner to enantioenriched ()-profens and profenols following a parallel interconnected dynamic asymmetric transformation (PIDAT).

View Article and Find Full Text PDF

Weak, intermolecular interactions in amine dimers were studied by using the combination of a dispersionless density functional and a function that describes the dispersion contribution to the interaction energy. The validity of this method was shown by comparison of structural and energetic properties with data obtained with a conventional density functional and the coupled cluster method. The stability of amine dimers was shown to depend on the size, the shape, and the relative orientation of the alkyl substituents, and it was shown that the stabilization energy for large substituents is dominated by dispersion interactions.

View Article and Find Full Text PDF

The catalytic promiscuity of a ferulic acid decarboxylase from sp. (FDC_s) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N-, C- and S-nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% . The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions.

View Article and Find Full Text PDF

We report the use of bifunctional starting materials (ketoacids) in a diastereoselective Passerini three-center-two-component reaction. Study of the reaction scope revealed the required structural features for stereoselectivity in the isocyanide addition. In this system, an interesting isomerization of the primary Passerini product - the α-carboxamido lactone - into an atypical product, an α-hydroxy imide, was found to occur under acidic conditions.

View Article and Find Full Text PDF