1,401 results match your criteria: "Department of Chemistry "Ugo Schiff" University of Florence[Affiliation]"

Fireproof coatings are the simplest, most efficient, and oldest method for protecting a wide range of flammable products, such as wood. Furthermore, surface ignition is the initial phase, so surface protection is essential to reduce fire propagation. Furthermore, delaying the spread of flames can help to save someone when a fire starts.

View Article and Find Full Text PDF

Aims: Long-term oral anticoagulation is the primary therapy for preventing ischemic stroke in patients with atrial fibrillation (AF). Different types of oral anticoagulant drugs can have specific effects on the metabolism of patients. Here we characterize, for the first time, the serum metabolomic and lipoproteomic profiles of AF patients treated with anticoagulants: vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs).

View Article and Find Full Text PDF

A gel that exhibits intrinsically multiple-responsive behavior was prepared from an oligopeptide and studied. ACP(65-74) is an active decapeptide fragment of acyl carrier protein. We investigated 3% w/v ACP(65-74)-NH self-healing physical gels in water, glycerol carbonate (GC), and their mixtures.

View Article and Find Full Text PDF

Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes.

View Article and Find Full Text PDF

Laser-induced 2D/0D graphene-nanoceria freestanding paper-based films for on-site hydrogen peroxide monitoring in no-touch disinfection treatments.

Mikrochim Acta

June 2024

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy.

A one-shot CO laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe.

View Article and Find Full Text PDF

Our society largely relies on inorganic semiconductor devices which are, so far, fabricated using expensive and complex processes requiring ultra-high vacuum equipment. Here we report on the possibility of growing a p-n junction taking advantage of electrochemical processes based on the use of aqueous solutions. The growth of the junction has been carried out using the Electrochemical Atomic Layer Deposition (E-ALD) technique, which allowed to sequentially deposit two different semiconductors, CdS and CuS, on an Ag(111) substrate, in a single procedure.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding inhibitor binding at metalloenzymes is critical for rational drug design, but structural measurement uncertainties hinder reliable quantum chemical calculations.
  • Advanced computational methods are necessary to refine active site structures beyond traditional experimental techniques.
  • A novel approach combining neural networks and support vector regression has shown great promise in improving structural accuracy, as demonstrated by the refined active site of human carbonic anhydrase 2, paving the way for further drug target investigations.
View Article and Find Full Text PDF

Strategies for the design of analogs of auranofin endowed with anticancer potential.

Expert Opin Drug Discov

July 2024

Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.

Introduction: Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug.

View Article and Find Full Text PDF

New oral tablets of nebivolol have been developed aiming to improve, by cyclodextrin (CD) complexation, its low solubility/dissolution properties-the main reason behind its poor/variable oral bioavailability. Phase-solubility studies, performed using βCD and highly-soluble βCD-derivatives, indicated sulfobutylether-βCD (SBEβCD) as the best solubilizing/complexing agent. Solid drug-SBEβCD systems were prepared by different methods and characterized for solid-state and dissolution properties.

View Article and Find Full Text PDF

Bicyclic peptides have attracted the interest of pharmaceutical companies because of their remarkable properties, putting them on a new path in medicine. Their conformational rigidity improves proteolytic stability and leads to rapid penetration into tissues via any possible route of administration. Moreover, elimination of renal metabolism is of great importance, for example, for people with a history of liver diseases.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed.

View Article and Find Full Text PDF

The voltage-dependent anion-selective channel isoform 1 (VDAC1) is a pivotal component in cellular metabolism and apoptosis with a prominent role in many cancer types, offering a unique therapeutic intervention point. Through an -to- approach we identified a set of VA molecules (VDAC Antagonists) that selectively bind to VDAC1 and display specificity toward cancer cells. Biochemical characterization showed that VA molecules can directly interact with VDAC1 with micromolar affinity by competing with the endogenous ligand NADH for a partially shared binding site.

View Article and Find Full Text PDF

Antimicrobial resistance is a leading cause of mortality, calling for the development of new antibiotics. The fungal antibiotic plectasin is a eukaryotic host defence peptide that blocks bacterial cell wall synthesis. Here, using a combination of solid-state nuclear magnetic resonance, atomic force microscopy and activity assays, we show that plectasin uses a calcium-sensitive supramolecular killing mechanism.

View Article and Find Full Text PDF

In this work, the study of the new ligand 3,3'-bis[,-bis(pyridine-2-ylmethyl)aminomethyl]-2,2'-dihydroxybiphenyl (L) is reported, where a central 2,2'-biphenol (BPH) fluorophore was functionalized at 3,3'-positions with two dipicolylamine (DPA) side arms as receptor units. Following the synthesis and full chemical-physical characterization, the acid-base and Zn-coordination abilities of L were investigated through a combination of potentiometric, UV-Vis, fluorescence, NMR, XRD and DFT measurements. The optical properties of the ligand turned out to be strongly dependent on the pH, being straightforwardly associated with the protonation state of the BPH moiety, whereas its peculiar design allowed to form stable mono and dinuclear Zn complexes.

View Article and Find Full Text PDF

Polyphosphoester-stabilized cubosomes encapsulating a Ru(II) complex for the photodynamic treatment of lung adenocarcinoma.

J Colloid Interface Sci

September 2024

Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy. Electronic address:

The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)(bpy-morph)](PF) (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (O).

View Article and Find Full Text PDF

The absolute configuration of three chiral eugenol derivatives was assigned by a multi-step methodology based on enantioselective HPLC combined with spectroscopic and theoretical calculations. Milligram amounts of enantiopure forms used for stereochemical characterization were isolated by HPLC on the immobilized amylose-based chiral stationary phase Chiralpak IG using normal phase elution conditions. The absolute configuration was indirectly determined for one of the three compounds by H NMR via methoxy-α-trifluoromethyl-α-phenylacetic acid derivatization (Mosher's acid).

View Article and Find Full Text PDF

The reactivity of the anticancer drug picoplatin (-amminedichlorido(2-methylpyridine)platinum(II) complex) with the model proteins hen egg white lysozyme (HEWL) and bovine pancreatic ribonuclease (RNase A) was investigated by electrospray ionisation mass spectrometry (ESI MS) and X-ray crystallography. The data were compared with those previously obtained for the adducts of these proteins with cisplatin, carboplatin and oxaliplatin under the same experimental conditions. ESI-MS data show binding of Pt to both proteins, with fragments retaining the 2-methylpyridine ligand and, possibly, a chloride ion.

View Article and Find Full Text PDF

The Role of Lysozyme in the Formation of Bioinspired Silicon Dioxide.

Chemistry

July 2024

Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.

Several organisms are able to polycondensate tetraoxosilicic(IV) acid to form silicon(IV) dioxide using polycationic molecules. According to an earlier mechanistic proposal, these molecules undergo a phase separation and recent experimental evidence appears to confirm this model. At the same time, polycationic proteins like lysozyme can also promote polycondensation of silicon(IV) dioxide, and they do so under conditions that are not compatible with liquid-liquid phase separation.

View Article and Find Full Text PDF

Ruthenium(II) polypyridyl complexes continue to raise increasing interest for the encouraging results in several biomedical areas. Considering their vast chemical-physical repertoire, in particular the possibility to switch from the sensitization of reactive oxygen species (ROS) to ROS-scavenging abilities by tuning the nature of their ligands, it is therefore surprising that their potential as antioxidants has not been largely investigated so far. Herein, we explored the antioxidant behaviour of the novel ruthenium compound [Ru(dbpy)(2,3-DAN)Cl]PF (Ru1), featuring a benzoxazole derivative (dpby=2,6-bis(4-methyl-2-benzoxazolyl)pyridine) and the non-innocent 2,3-diamminonaftalene (2,3-DAN) ligand, along with the reference tpy-containing analogue [Ru(tpy)(2,3-DAN)Cl]PF (Ru2) (tpy=2,2':6',2''-terpyridine).

View Article and Find Full Text PDF

Terpenes and pentene dimers are less studied volatile organic compounds (VOCs) but are associated with specific features of extra virgin olive oils (EVOOs). This study aimed to analyze mono- and sesquiterpenes and pentene dimers of Italian monovarietal EVOOs over 3 years (14 cultivars, 225 samples). A head space-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method recently validated was used for terpene and pentene dimer quantitation.

View Article and Find Full Text PDF

Structural Investigations on 2-Amidobenzimidazole Derivatives as New Inhibitors of Protein Kinase CK1 Delta.

Pharmaceuticals (Basel)

April 2024

Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy.

Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Cancer cell lines are frequently used in metabolomics, such as in vitro tumor models. In particular, A2780 cells are commonly used as a model for ovarian cancer to evaluate the effects of drug treatment. Here, we compare the NMR metabolomics profiles of A2780 and cisplatin-resistant A2780 cells with those of cells derived from 10 patients with high-grade serous ovarian carcinoma (collected during primary cytoreduction before any chemotherapeutic treatment).

View Article and Find Full Text PDF

On December 12th, 2023, the European Commission took regulatory action to amend Annex XVII of REACH, imposing restrictions on the use of N,N-dimethylformamide (DMF) within the EU market owing to its high toxicity. Historically, DMF has been widely considered the gold standard for solid-phase peptide synthesis (SPPS). Being urgent to propose alternative solvents, we tested the suitability of non-hazardous neat and mixed solvents.

View Article and Find Full Text PDF

Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales.

Adv Colloid Interface Sci

May 2024

Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy. Electronic address:

Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications.

View Article and Find Full Text PDF

Aptamers have superior structural properties and have been widely used in bacterial detection methods. However, the problem of low affinity still exists in complex sample detection. In contrast, hybridization chain reaction (HCR)-based model I and rolling circle amplification (RCA)-based model II multivalent activatable aptamers (multi-Apts) can fulfill the need for low-cost, rapid, highly sensitive and high affinity detection of S.

View Article and Find Full Text PDF