5 results match your criteria: "Department of Chemical Engineering Curtin University Perth Western Australia 6845 Australia.[Affiliation]"
Hydrogen production from renewable electricity relies upon the development of an efficient alkaline water electrolysis device and, ultimately, upon the availability of low cost and stable electrocatalysts that can promote oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Normally, different electrocatalysts are applied for HER and OER because of their different reaction intermediates and mechanisms. Here, the synthesis of a heterostructured CoP@a-CoOx plate, which constitutes the embedded crystalline cobalt phosphide (CoP) nanoclusters and amorphous cobalt oxides (CoOx) nanoplates matrix, via a combined solvothermal and low temperature phosphidation route is reported.
View Article and Find Full Text PDFPractical application of hydrogen production from water splitting relies strongly on the development of low-cost and high-performance electrocatalysts for hydrogen evolution reaction (HER). The previous researches mainly focused on transition metal nitrides as HER catalysts due to their electrical conductivity and corrosion stability under acidic electrolyte, while tungsten nitrides have reported poorer activity for HER. Here the activity of tungsten nitride is optimized through rational design of a tungsten nitride-carbon composite.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2017
Department of Chemical Engineering Curtin University Perth Western Australia 6845 Australia.
Solid oxide fuel cells (SOFCs), which can directly convert chemical energy stored in fuels into electric power, represent a useful technology for a more sustainable future. They are particularly attractive given that they can be easily integrated into the currently available fossil fuel infrastructure to realize an ideal clean energy system. However, the widespread use of the SOFC technology is hindered by sulfur poisoning at the anode caused by the sulfur impurities in fossil fuels.
View Article and Find Full Text PDFSpherical materials with yolk-shell structure have great potential for a wide range of applications. The main advantage of the yolk-shell geometry is the possibility of introducing different chemical or physical properties within a single particle. Here, a one-step hydrothermal synthesis route for fabricating amphoteric yolk-shell structured aluminum phenylphosphonate microspheres using urea as the precipitant is proposed.
View Article and Find Full Text PDFAdv Sci (Weinh)
February 2016
is proposed to identify a series of BaCo Fe SnO perovskites with tunable electrocatalytic activity for the oxygen evolution reaction (OER). Simply through tailoring the relative concentrations of less OER-active tin and iron dopants, a cubic perovskite structure (BaCoFeSnO) is stabilized, showing intrinsic OER activity >1 order of magnitude larger than IrO and a Tafel slope of 69 mV dec.
View Article and Find Full Text PDF