1,279,648 results match your criteria: "Department of Chemical & Biomolecular Engineering; University of Delaware[Affiliation]"

Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

KOBu-Promoted [3 + 2] Cycloaddition of Dimethyl Sulfoxide with Fullerenes.

Org Lett

January 2025

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.

KOBu-promoted [3 + 2] cycloaddition of dimethyl sulfoxide (DMSO) with fullerenes has been developed for facile and efficient one-pot synthesis of 1,2,3,4-cyclic sulfoxide-fused [60]/[70]fullerene dihydrides, which offers a versatile platform for the site-selective preparation of various fullerene multiadducts with a wide range of functional groups. The utility of these tetra-functionalized fullerenes is demonstrated by the successful application as electron-transport materials in perovskite solar cells.

View Article and Find Full Text PDF

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks.

Nanomicro Lett

January 2025

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.

Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Rare-earth oxide promoted Pd electrocatalyst for formic acid oxidation.

Dalton Trans

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.

The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.

View Article and Find Full Text PDF

The accumulation pattern of some inorganic pollutants in quarry sites around Ogun State was modeled using a Fuzzy comprehensive assessment (FCA). Potentially toxic elements (PTEs) and naturally occurring radionuclides materials (NORMs) were assessed from soil samples collected from ten quarry sites in three districts (Odeda, Ajebo, and Ijebu Ode) in Ogun State. Three (3) NORMs ( K, U, Th) were assessed using gamma spectrometer with a NaI detector while ten (10) PTEs (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by digestion method using Inductively coupled plasma optical emission spectrophotometer.

View Article and Find Full Text PDF

The great diversity of specialist plant-feeding insects suggests that host plant shifts may initiate speciation, even without geographic barriers. Pheromones and kairomones mediate sexual communication and host choice, and the response to these behaviour-modifying chemicals is under sexual and natural selection, respectively. The concept that the interaction of mate signals and habitat cues facilitates reproductive isolation and ecological speciation is well established, while the traits and the underlying sensory mechanisms remain unknown.

View Article and Find Full Text PDF

The advent of two-dimensional van der Waals materials is a frontier of condensed matter physics and quantum devices. However, characterizing such materials remains challenging due to the limitations of bulk material techniques, necessitating the development of specialized methods. Here, we investigate the superconducting properties of BiSrCaCuO flakes by integrating them with a hybrid superconducting microwave resonator.

View Article and Find Full Text PDF

Super-Resolved Mapping of Electrochemical Reactivity in Single 3D Catalysts.

Nano Lett

January 2025

Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.

Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.

View Article and Find Full Text PDF

The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.

View Article and Find Full Text PDF

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Recent studies suggest that lung adenocarcinoma cells are closely associated with the tumorigenesis of large-cell neuroendocrine carcinoma via cellular transformation. However, morphological evidence, along with genetic abnormalities before, during, and after transformation, is quite limited. We present here a case of combined large-cell neuroendocrine carcinoma and adenocarcinoma exhibiting acinar and solid patterns.

View Article and Find Full Text PDF

In this work, we use experimental and theoretical techniques to study the origin of the boosted hydrogen evolution reaction (HER) catalytic activity of two pyridyl-pyrrolidine functionalized C fullerenes. Notably, the mono-(pyridyl-pyrrolidine) penta-adduct of C has exhibited a remarkable HER catalytic activity as a metal-free catalyst, delivering an overpotential () of 75 mV RHE and a very low onset potential of -45 mV RHE. This work addresses fundamental questions about how functionalization on C changes the electron density on fullerene cages for high-performance HER electrocatalysis.

View Article and Find Full Text PDF

Realizing zero-threshold population inversion plasmonic doping.

Nanoscale

January 2025

Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.

Lowering the population inversion threshold is key to leveraging quantum dots (QDs) for nanoscale lasing and laser miniaturization. However, optical realization of population inversion in QDs has an inherent limitation: the number of excited electrons per QD is bound by the absorbed photons. Here we show that one can break this population limit and realize near-zero threshold inversion plasmonic doping.

View Article and Find Full Text PDF

Nature and stability of the chemical bond in H3C-XHn (XHn = CH3, NH2, OH, F, Cl, Br, I).

J Chem Phys

January 2025

Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands, https://www.theochem.nl.

We have quantum chemically analyzed the trends in bond dissociation enthalpy (BDE) of H3C-XHn single bonds (XHn = CH3, NH2, OH, F, Cl, Br, I) along three different dissociation pathways at ZORA-BLYP-D3(BJ)/TZ2P: (i) homolytic dissociation into H3C∙ + ∙XHn, (ii) heterolytic dissociation into H3C+ + -XHn, and (iii) heterolytic dissociation into H3C- + +XHn. The associated BDEs for the three pathways differ not only quantitatively but, in some cases, also in terms of opposite trends along the C-X series. Based on activation strain analyses and quantitative molecular orbital theory, we explain how these differences are caused by the profoundly different electronic structures of, and thus bonding mechanisms between, the resulting fragments in the three different dissociation pathways.

View Article and Find Full Text PDF

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

Coronary artery disease remains a significant global health issue and is a leading cause of mortality. Dual antiplatelet therapy, including clopidogrel, is essential for preventing stent thrombosis after coronary artery stenting. This study assessed the comparative efficacy and safety of generic versus brand-name clopidogrel in a large Taiwanese cohort.

View Article and Find Full Text PDF

Thermodynamic regulation of carbon dioxide capture by functionalized ionic liquids.

Chem Soc Rev

January 2025

Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.

Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) in obese patients remains challenging. Recent studies have linked obesity to an increased risk of TNBC and malignancies. Through multiomic analysis and experimental validation, a dysfunctional Eukaryotic Translation Initiation Factor 3 Subunit H (EIF3H)/Yes-associated protein (YAP) proteolytic axis is identified as a pivotal junction mediating the interplay between cancer-associated adipocytes and the response to anti-cancer drugs in TNBC.

View Article and Find Full Text PDF

Diet quality indicators and organic food consumption in mothers of young children.

J Sci Food Agric

January 2025

Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.

Background: The health benefits of organic food provide one reason for consuming it. Various studies have shown that regular organic food consumers (REG eco-con) follow a healthier diet. However, this topic has not been explored in Poland.

View Article and Find Full Text PDF

The role of N-methyladenosine (mA) mRNA modifications in herpesvirus infections.

J Virol

January 2025

Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Herpesviruses, a family of large enveloped DNA viruses, establish persistent infections in a wide range of hosts. This characteristic requires an intricate network of interactions with their hosts and host cells. In recent years, the interplay between herpesviruses and the epitranscriptome-chemical modifications in transcripts that may affect mRNA biology and fate-has emerged as a novel aspect of herpesvirus-host interactions.

View Article and Find Full Text PDF

Bioenergetic trade-offs can reveal the path to superior microbial CO fixation pathways.

mSystems

January 2025

Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.

A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).

View Article and Find Full Text PDF

The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.

View Article and Find Full Text PDF