440,462 results match your criteria: "Department of Biotechnology; Norwegian University of Science and Technology; Trondheim[Affiliation]"

Introduction: Diagnostic performance of optical coherence tomography (OCT) to detect Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains limited. We aimed to develop a deep-learning algorithm using OCT to detect AD and MCI.

Methods: We performed a cross-sectional study involving 228 Asian participants (173 cases/55 controls) for model development and testing on 68 Asian (52 cases/16 controls) and 85 White (39 cases/46 controls) participants.

View Article and Find Full Text PDF

Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist.

View Article and Find Full Text PDF

The current state of cancer treatment has encountered limitations, with each method having its own drawbacks. The emergence of nanotechnology in recent years has highlighted its potential in overcoming these limitations. Nanomedicine offers various drug delivery mechanisms, including passive, active, and endogenous targeting, with the advantage of modifiability and shapability.

View Article and Find Full Text PDF

Proper polarization of newly generated neurons is a critical process for neural network formation and brain development. The pan-neurotrophin p75 receptor plays a key role in this process localizing asymmetrically in one of the differentiating neurites and specifying its axonal identity in response to neurotrophins. During axonal specification, p75 levels are transiently modulated, yet the molecular mechanisms underlying this process are not known.

View Article and Find Full Text PDF

The adhesion mechanism of mucoadhesive tablets with dissimilar chain flexibility on viscoelastic hydrogels.

Mater Today Bio

February 2025

Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary.

Mucosal membranes with strong variability in their viscoelastic properties line numerous organs and are often targeted by mucoadhesive formulations, e.g., highly swellable hydroxypropylmethylcellulose (HPMC) and slightly cross-linked poly(acrylic acid) (PAA) tablets.

View Article and Find Full Text PDF

Molecular dynamics of photosynthetic electron flow in a biophotovoltaic system.

Environ Sci Ecotechnol

January 2025

Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.

Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.

View Article and Find Full Text PDF

Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.

View Article and Find Full Text PDF

Eugenol inhibits NEAT1 as a ceRNA in pre-cancerous breast lesions.

Heliyon

January 2025

Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong, 529525, China.

Objective: Eugenol (EU) from cloves is highly effective against different tumors. The long noncoding ribonucleic acids (lncRNAs), which play a role of competing endogenous RNAs (ceRNAs), suppress microRNAs (miRNAs) involved in post-transcriptional regulatory networks. The present work focused on analyzing how EU affected pre-cancerous breast lesions (PBL).

View Article and Find Full Text PDF

Convectional drugs have failed to tackle the increasing public health challenge of Cancer and diabetes. Phytochemical conjugated nanoparticles are providing safer therapeutic alternatives to address this global challenge. Nanoparticles of nickel, iron and zinc are especially useful because of their magnetic properties, abilities to prevent the onset or slow the progression of these diseases.

View Article and Find Full Text PDF

Objectives: Colorectal cancer is the third most common cancer worldwide, accounting for approximately 10 % of all cancer cases. It is also the second leading cause of cancer-related deaths globally. Phloretin is a natural compound found in apples and other fruits.

View Article and Find Full Text PDF

Mining Druggable Sites in Influenza A Hemagglutinin: Binding of the Pinanamine-Based Inhibitor M090.

ACS Med Chem Lett

January 2025

Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació - Campus Torribera, Universitat de Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain.

Assessing the binding mode of drug-like compounds is key in structure-based drug design. However, this may be challenged by factors such as the structural flexibility of the target protein. In this case, state-of-the-art computational methods can be valuable to explore the linkages between structural and pharmacological data.

View Article and Find Full Text PDF

Asymmetric Synthesis, Structure Determination, and Biologic Evaluation of Isomers of TLAM as PFK1 Inhibitors.

ACS Med Chem Lett

January 2025

Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Inhibiting phosphofructokinase-1 (PFK1) is a promising approach for treating lactic acidosis and mitochondrial dysfunction by activating oxidative phosphorylation. Tryptolinamide (TLAM) has been shown as a PFK1 inhibitor, but its complex stereochemistry, with 16 possible isomers complicates further development. We conducted an asymmetric synthesis, determined the absolute configurations, and evaluated the PFK1 inhibitory activity of the TLAM isomers.

View Article and Find Full Text PDF

Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, , survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. -acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides with nutrients.

View Article and Find Full Text PDF

The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.

Regen Ther

March 2025

Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.

The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.

View Article and Find Full Text PDF

Cassava is a starchy staple typically consumed in tropical countries; however, its high moisture content renders it susceptible to post-harvest deterioration. Fermentation has been used to improve shelf-life, functional properties, nutrient bioavailability, minimize toxic compounds, and alter aroma. In this study, the effect of added salt (5-25 %) on the pH, titratable acidity (TTA), and volatile compounds (VOCs) in cassava fermented was investigated.

View Article and Find Full Text PDF

High Aspect Ratio Polymer Nanocarriers for Gene Delivery and Expression in Plants.

Nano Lett

January 2025

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Plant genetic engineering methods are critical for food security and biofuel production and to enable molecular farming. Here, we elucidated how polymeric high aspect ratio nanocarriers can enable DNA delivery to plants and transient expression. We demonstrated that a nanocarrier with 20 nm width, 80 nm length, and a polymer-to-DNA ratio of N/P = 3.

View Article and Find Full Text PDF

G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs.

View Article and Find Full Text PDF

Controlled ligation and elongation of uniformly truncated amyloid nanofibrils.

Nanoscale

January 2025

Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.

This study investigates the production and inter-fibril interactions of uniformly truncated amyloid nanofibrils. By varying extrusion cycles (0, 50, and 100) and using carbonate filters with 100 nm and 200 nm pore sizes, precise fibril length control was achieved. Atomic force microscopy (AFM) confirmed that the mean length of the truncated fibrils corresponded to the respective pore size as extrusion cycles increased.

View Article and Find Full Text PDF

Innovative applications of MXenes in dialysis: enhancing filtration efficiency.

Nanoscale

January 2025

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.

MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes.

View Article and Find Full Text PDF

CO capture is an important process for mitigating CO emissions in the atmosphere. Recently, ionic liquids have been identified as possible systems for CO capture processes. Major drawbacks of such systems are mostly in the high cost of synthesis of such liquids and poor biodegradability.

View Article and Find Full Text PDF

The global rise of drug-resistant malaria parasites is becoming an increasing threat to public health, emphasizing the urgent need for the development of new therapeutic strategies. Artimisinin- based therapies, once the backbone of malaria treatment, are now at risk due to the resistance developed in parasites. The lack of a universally accessible malaria vaccine exacerbates this crisis, underscoring the need to explore new antimalarial drugs.

View Article and Find Full Text PDF

In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).

View Article and Find Full Text PDF

Jujube (Ziziphus ujuba Mill.) holds great importance as a fruit tree in China, with strong tolerance to drought and saline stress, but its growth is limited by vulnerability to cold stress. Consequently, the role of MAPK cascades in mediating jujube cold stress response remains unclear, with the specific function of ZjMAPKK4 in this context yet to be fully elucidated.

View Article and Find Full Text PDF

This study explores novel therapeutic avenues for diabetes, a global health concern marked by elevated blood glucose levels. We investigated the anti-diabetic potential of Gymnema Sylvestre's bioactive compounds, including Gymnemic acid I, Stigmasterol, Deacylgymnemic acid, Beta-Amyrin acetate, Longispinogenin, Gymnemic acid II, Gymnemic acid, Gymnemic acid X, Gymnemaside VI, Phytic acid and Gymnemic acid X. Employing network pharmacology, molecular docking and molecular dynamics (MD), we elucidated the potential mechanism of action.

View Article and Find Full Text PDF