2 results match your criteria: "Department of Biomedical Engineering Yale University New Haven CT 06520 USA.[Affiliation]"

The effector response of immune cells dictated by an array of secreted proteins is a highly dynamic process, requiring sequential measurement of all relevant proteins from single cells. Herein, a microchip-based, 10-plexed, sequential secretion assay on the same single cells and at the scale of ≈5000 single cells measured simultaneously over 4 time points are shown. It is applied to investigating the time course of single human macrophage response to toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) and reveals four distinct activation modes for different proteins in single cells.

View Article and Find Full Text PDF

The perivascular niche (PVN) plays an essential role in brain tumor stem-like cell (BTSC) fate control, tumor invasion, and therapeutic resistance. Here, a microvasculature-on-a-chip system as a PVN model is used to evaluate the ex vivo dynamics of BTSCs from ten glioblastoma patients. BTSCs are found to preferentially localize in the perivascular zone, where they exhibit either the lowest motility, as in quiescent cells, or the highest motility, as in the invasive phenotype, with migration over long distance.

View Article and Find Full Text PDF