267,774 results match your criteria: "Department of Biomedical Engineering; University of Arkansas ; Fayetteville[Affiliation]"

Importance: Rapid digitalization of health care and a dearth of digital health education for medical students and junior physicians worldwide means there is an imperative for more training in this dynamic and evolving field.

Objective: To develop an evidence-informed, consensus-guided, adaptable digital health competencies framework for the design and development of digital health curricula in medical institutions globally.

Evidence Review: A core group was assembled to oversee the development of the Digital Health Competencies in Medical Education (DECODE) framework.

View Article and Find Full Text PDF

Quantifying the Relationship Between At-Home Shoulder Physiotherapy Participation and Outcome: What can a Watch Tell Us?

J Am Acad Orthop Surg

January 2025

From the Holland Bone and Joint Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (Boyer, Burns, Razmjou, Renteria, Sheth, Richards, and Whyne), the Division of Orthopaedic Surgery, University of Toronto, Toronto, Ontario, Canada (Burns, Sheth, Richards, and Whyne), the Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada (Boyer, Burns, and Whyne), the Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada (Razmjou), and the Sunnybrook Orthopaedic Upper Limb (SOUL), Sunnybrook Health Science Centre, Toronto, Ontario, Canada (Sheth, Richards, and Whyne).

Introduction: Exercise-based physiotherapy is an established treatment of rotator cuff injury. Objective assessment of at-home exercise is critical to understand its relationship with clinical outcomes. This study uses the Smart Physiotherapy Activity Recognition System to measure at-home physiotherapy participation in patients with rotator cuff injury based on inertial sensor data captured from smart watches.

View Article and Find Full Text PDF

Objectives: Sepsis is a life-threatening medical emergency, with a profound healthcare burden globally. Its pathophysiology is complex, heterogeneous and temporally dynamic, making diagnosis challenging. Medical management is predicated on early diagnosis and timely intervention.

View Article and Find Full Text PDF

Brain network dynamics have been extensively explored in patients with subjective cognitive decline (SCD). However, these studies are susceptible to individual differences, scanning parameters, and other confounding factors. Therefore, how to reveal subtle SCD-related subtle changes remains unclear.

View Article and Find Full Text PDF

Due to its availability and biocompatibility, the human amniotic membrane (hAM) is being investigated by a large number of researchers with the goal of gaining a better understanding of the materials' mechanical behavior and structural integrity and optimizing them for various Tissue Engineering applications. In this research, biopolymers sodium alginate (SA) and silk fibroin (SF) were electrospun onto a decellularized hAM, resulting in two types of hybrid scaffolds: hAM/SF and hAM/SF/SA. The mechanical characteristics of these nanofibers were then analyzed to guide scaffold optimization for applications using these materials.

View Article and Find Full Text PDF

Ternary heterojunction BiS/MoS/BiMoO was designed as a signal probe to develop a dual signal amplification strategy empowered electrochemical biosensor for sensitive miRNA-21 detection by combining with catalytic hairpin assembly (CHA). The combination of the BiS/MoS/BiMoO heterojunction as a tracer indication probe and the CHA amplification strategy not only took fully use of the highly dense nanowire interwoven structure and superior active region of the probe, but also endowed the ability to improve the molecular hybridization efficiency by collision, which significantly avoided the cumbersome chain design and greatly simplified the step-by-step construction of the electrode surface. Hairpin H1 was first added dropwise to the gold nanoparticle-decorated electrode surface, and then opened by the introduced miRNA-21 to initiate the specific hybridization.

View Article and Find Full Text PDF

The increasing prevalence of antimicrobial resistance and adverse effects of systemic treatments calls for urgent reevaluation of current methods that rely on excessive, uncontrolled drug administration. In recent years triggerable systems have emerged as promising alternatives, enabling time-controlled and localized drug release, which are only activated if necessary. Light is an obvious candidate as an external trigger, since it allows for localized activation, is non-invasive and its wavelength and intensity can be tailored to fit the demands of the drug release system.

View Article and Find Full Text PDF

Positive Feedback Regulation between KLF5 and XPO1 Promotes Cell Cycle Progression of Basal like Breast Cancer.

Adv Sci (Weinh)

January 2025

Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China.

Basal-like breast cancer (BLBC), overlapping with the subgroup of estrogen receptor (ER), progesterone receptor (PR), and HER2 triple-negative breast cancer, has the worst prognosis and limited therapeutics. The XPO1 gene encodes nuclear export protein 1, a promising anticancer target which mediates nucleus-cytoplasm transport of nuclear export signal containing proteins such as tumor suppressor RB1 and some RNAs. Despite drugs targeting XPO1 are used in clinical, the regulation of XPO1 expression and functional mechanism is poorly understood, especially in BLBC.

View Article and Find Full Text PDF

Background: Patients with post-COVID condition (PCC) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) experience symptoms potentially associated with small fiber neuropathy (SFN).

Methods: A sample of 90 participants, comprising 30 PCC patients, 30 ME/CFS patients, and 30 healthy controls (HC), matched by sex and age, was assessed. Neuropathic, autonomic, and fatigue symptoms were measured with TaskForce Monitor, the Sudoscan, heat and cold evoked potentials, In Vivo Corneal Confocal Microscopy (IVCCM), and specialized questionaries.

View Article and Find Full Text PDF

Neointimal hyperplasia, a pathological response to arterial interventions or injury, often leads to restenosis and recurrent narrowing or occlusion, particularly in the peripheral vasculature. Its prevalence and negative impact on the long-term success of vascular interventions have driven extensive research aimed at better understanding the condition and developing effective therapies. This review provides a comprehensive overview of emerging bioengineering strategies for treating neointimal hyperplasia in peripheral vessels.

View Article and Find Full Text PDF

Triggered "On/off" Luminescent Polypeptide Bowl-Shaped Nanoparticles for Selective Lighting of Tumor Cells.

Small

January 2025

State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.

Functional polymeric nanoparticles, especially those with anisotropic structures, have shown significant potential and advantages in biomedical applications including detecting, bioimaging, antimicrobial and anticancer. Herein, tetraphenylethylene (TPE) and azobenzene modified polypeptides of poly((-glutamic acid) tetraphenylethylene-stat-(-glutamic acid)) (P(GATPE-stat-GA)) and poly((-glutamic acid) azobenzene-stat-(-glutamic acid)) (P(GAAzo-stat-GA) are synthesized, which self-assemble into bowl-shaped nanoparticles (BNPs) with controlled diameter, opening size and fluorescent property individually, or by co-assembly. Due to the quenching effect of azobenzene, the fluorescence of the coassembled BNPs is completely inhibited.

View Article and Find Full Text PDF

Chemotherapy is generally given by intravenous (IV) administration which provides higher bioavailability than other systemic routes. However, in the case of lung cancer, the pulmonary (INH) route is the other choice for inhalable formulations. In the study, biochemical and histological parameters of Cabazitaxel (CBZ) free (2 mg kg) and nanoparticle (NP) (2 mg kg CBZ equivalent) formulations are investigated after IV and INH administration in rats.

View Article and Find Full Text PDF

In this study, thiolated sodium alginate (SA) and hydrophilic, polymerizable Janus-type polyhedral oligomeric silsesquioxane (AS-POSS) are synthesized by introducing thiol and sulfonic acid groups, respectively. A series of pH-responsive SA/PEGDA/AS-POSS nanocomposite hydrogels are successfully prepared through Michael addition reactions between the thiol groups of thiolated sodium alginate and the double bonds in the molecular chains of AS-POSS and poly(ethylene glycol) diacrylate (PEGDA). This reaction proceeds rapidly under physiological conditions without requiring initiators or catalysts.

View Article and Find Full Text PDF

The globally prevalent rotator cuff tear has a high re-rupture rate, attributing to the failure to reproduce the interfacial fibrocartilaginous enthesis. Herein, a hierarchically organized membrane is developed that mimics the heterogeneous anatomy and properties of the natural enthesis and finely facilitates the reconstruction of tendon-bone interface. A biphasic membrane consisting of a microporous layer and a mineralized fibrous layer is constructed through the non-solvent induced phase separation (NIPS) strategy followed by a co-axial electrospinning procedure.

View Article and Find Full Text PDF

HOS15 impacts DIL9 protein stability during drought stress in Arabidopsis.

New Phytol

January 2025

Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.

HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15) acts as a substrate receptor of E3 ligase complex, which plays a negative role in drought stress tolerance. However, whether and how HOS15 participates in controlling important transcriptional regulators remains largely unknown. Here, we report that HOS15 physically interacts with and tightly regulates DROUGHT-INDUCED LIKE 19 (DIL9) protein stability.

View Article and Find Full Text PDF

Dissolving microneedles (DMNs) is a promising technology for transdermal and intradermal drug delivery. However, effective decontamination protocols are necessary to ensure safety and efficacy in clinical applications. The challenge is to use a technique that preserves mechanical properties, does not introduce chemicals, and can decontaminate DMNs without affecting the drug.

View Article and Find Full Text PDF

Defective Cystic Fibrosis Transmembrane Conductance Regulator Accelerates Skeletal Muscle Aging by Impairing Autophagy/Myogenesis.

J Cachexia Sarcopenia Muscle

February 2025

Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.

Background: Regenerative capacity of skeletal muscles decreases with age. Deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) is associated with skeletal muscle weakness as well as epithelial cell senescence. However, whether and how CFTR plays a role in skeletal muscle regeneration and aging were unclear.

View Article and Find Full Text PDF

Cranial bone maneuver ameliorates Alzheimer's disease pathology via enhancing meningeal lymphatic drainage function.

Alzheimers Dement

January 2025

Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China.

Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia. Recent research highlights meningeal lymphatics as key regulators in neurological diseases, suggesting that enhancing their drainage function could be a potential therapeutic strategy for AD. Our proof-of-concept study demonstrated that cranial bone transport can improve meningeal lymphatic drainage function and promote ischemic stroke recovery.

View Article and Find Full Text PDF

The aim of this study was to determine whether closed-loop vibration stimulation, delivered at +3% of the heart rate frequency at an imperceptible intensity before waking, could reduce sleep inertia. Participants napped on a bed equipped with a woofer that delivered vibration stimulation every 5 min, starting 30 min before their scheduled wake time. The effects of the stimulation were assessed using a Psychomotor Vigilance Task performed immediately upon waking, along with the analysis of salivary cortisol and melatonin levels, as well as subjective arousal ratings based on the Karolinska Sleepiness Scale and the Stanford Sleepiness Scale.

View Article and Find Full Text PDF

Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies.

J Cell Biochem

January 2025

Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India.

Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target.

View Article and Find Full Text PDF

Vascular hypo-fibrinolysis is a historically underappreciated and understudied aspect of venous thromboembolism (VTE). This paper describes the development of a micro-clot dissolution assay for quantifying the fibrinolytic capacity of endothelial cells - a key driver of VTE development. This assay is enabled using aqueous two-phase systems (ATPS) to bioprint microscale fibrin clots over human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Microneedles at the Forefront of Next Generation Theranostics.

Adv Sci (Weinh)

January 2025

Department of Biomedical Engineering (BME), National University of Singapore, Singapore, 117583, Singapore.

Theranostics, combining therapeutic and diagnostic functions, marks a revolutionary advancement in modern medicine, with microneedle technology at its forefront. This review explores the substantial developments and multifaceted applications of microneedles, which have evolved from basic transdermal drug delivery devices to sophisticated diagnostic and therapeutic platforms. Microneedles enhance access to biomarkers via interstitial fluid, enabling real-time monitoring of physiological conditions, such as glucose and hormone levels, thus facilitating continuous health tracking.

View Article and Find Full Text PDF

Editorial for "Identifying Primary Sites of Spinal Metastases: Expert-Derived Features vs. ResNet50 Model Using Non-Enhanced MRI".

J Magn Reson Imaging

January 2025

Department of Biomedical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, New York, USA.

View Article and Find Full Text PDF

Introduction: The phase 3 trial CLARITY AD found lecanemab slowed cognitive decline by 27%. However, subgroup analyses indicated a significant 31% sex difference in the effect and suggested no or limited effectiveness in females. We used simulations constrained by the trial design to determine whether that difference reflects a pre-existing sex difference in Alzheimer's disease progression or was a random event.

View Article and Find Full Text PDF