9 results match your criteria: "Department of Biology Case Western Reserve University Cleveland Ohio.[Affiliation]"

Body size is of fundamental importance to our understanding of extinct organisms. Physiology, ecology and life history are all strongly influenced by body size and shape, which ultimately determine how a species interacts with its environment. Reconstruction of body size and form in extinct animals provides insight into the dynamics underlying community composition and faunal turnover in past ecosystems and broad macroevolutionary trends.

View Article and Find Full Text PDF

Organisms that shift their phenologies in response to global warming will experience novel photic environments, as photoperiod (daylength) continues to follow the same annual cycle. How different organisms respond to novel photoperiods could result in phenological mismatches and altered interspecific interactions. We conducted an outdoor mesocosm experiment exposing green frog () larvae, gray treefrog () larvae, phytoplankton, periphyton, and zooplankton to a three-month shift in photoperiod: an early-season photoperiod (simulating April) and a late-season photoperiod (simulating July).

View Article and Find Full Text PDF

The evolution of body size within and among species is predicted to be influenced by multifarious environmental factors. However, the specific drivers of body size variation have remained difficult to understand because of the wide range of proximate factors that covary with ectotherm body sizes across populations with varying local environmental conditions. Here, we used female lizards collected from different populations across their wide range in China, and constructed linear mixed models to assess how climatic conditions and/or available resources at different altitudes shape the geographical patterns of lizard body size across altitude.

View Article and Find Full Text PDF

Cannibalism, the act of preying on and consuming a conspecific, is taxonomically widespread, and putatively important in the wild, particularly in teleost fishes. Nonetheless, most studies of cannibalism in fishes have been performed in the laboratory. Here, we test four predictions for the evolution of cannibalism by conducting one of the largest assessments of cannibalism in the wild to date coupled with a mesocosm experiment.

View Article and Find Full Text PDF

Cities are often hotter and drier compared with nearby undeveloped areas, but how organisms respond to these multifarious stressors associated with urban heat islands is largely unknown. Terrestrial isopods are especially susceptible to temperature and aridity stress as they have retained highly permeable gills from their aquatic ancestors. We performed a two temperature common garden experiment with urban and rural populations of the terrestrial isopod, , to uncover evidence for plastic and evolutionary responses to urban heat islands.

View Article and Find Full Text PDF

The reduced cost of high-throughput sequencing and the development of gene sets with wide phylogenetic applicability has led to the rise of sequence capture methods as a plausible platform for both phylogenomics and population genomics in plants. An important consideration in large targeted sequencing projects is the per-sample cost, which can be inflated when using off-the-shelf kits or reagents not purchased in bulk. Here, we discuss methods to reduce per-sample costs in high-throughput targeted sequencing projects.

View Article and Find Full Text PDF

Although studies increasingly disentangle phenotypic plasticity from evolutionary responses to environmental change, few test for transgenerational plasticity in this context. Here, we evaluate whether phenotypic divergence of acorn ants in response to urbanization is driven by transgenerational plasticity rather than evolution. F2 generation worker ants (offspring of laboratory-born queens) exhibited similar divergence among urban and rural populations as field-born worker ants, suggesting that evolutionary divergence rather than transgenerational plasticity was primarily responsible for shifts toward higher heat tolerance and diminished cold tolerance in urban acorn ants.

View Article and Find Full Text PDF

Utilizing herbarium specimens to quantify historical mycorrhizal communities.

Appl Plant Sci

April 2019

The Holden Arboretum 9500 Sperry Road Kirtland Ohio 44094 USA.

Premise Of The Study: Mycorrhiza are critical to ecosystem functioning, but a lack of historical baseline data limits our understanding of the long-term belowground effects of global change. Herbarium specimens may provide this needed insight. However, it is unknown whether DNA of arbuscular mycorrhizal fungi (AMF) can be reliably extracted from vascular plant specimen roots.

View Article and Find Full Text PDF

Urban ecosystems are rapidly expanding throughout the world, but how urban growth affects the evolutionary ecology of species living in urban areas remains largely unknown. Urban ecology has advanced our understanding of how the development of cities and towns change environmental conditions and alter ecological processes and patterns. However, despite decades of research in urban ecology, the extent to which urbanization influences evolutionary and eco-evolutionary change has received little attention.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: