7 results match your criteria: "Department of Biological Sciences University of Idaho Moscow Idaho USA.[Affiliation]"

The resources for carrying out and analyzing microbial evolution experiments have become more accessible, making it possible to expand these studies beyond the research laboratory and into the classroom. We developed five connected, standards-aligned yeast evolution laboratory modules, called "yEvo," for high school students. The modules enable students to take agency in answering open-ended research questions.

View Article and Find Full Text PDF

Evolutionary theory predicts that the process of range expansion will lead to differences in life-history and dispersal traits between the core and edge of a population. At the edge, selection and genetic drift can have opposing effects on reproductive ability, while spatial sorting by dispersal ability can increase dispersal. However, the context that individuals experience, including population density and mating status, also impacts dispersal behavior.

View Article and Find Full Text PDF

The precise detection of causal DNA mutations (deoxyribonucleic acid) is very crucial for forward genetic studies. Several sources of errors contribute to false-positive detections by current variant-calling algorithms, which impact associating phenotypes with genotypes. To improve the accuracy of mutation detection, we implemented a binning method for the accurate detection of likely ethyl methanesulfonate (EMS)-induced mutations in a sequenced mutant population.

View Article and Find Full Text PDF

Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether antidrive resistance will evolve to block the population suppression. An especially serious threat to some kinds of drive is mutations in the CRISPR cleavage sequence that block the action of CRISPR, but designs have been proposed to avoid this type of resistance.

View Article and Find Full Text PDF

With the global rise of human-mediated translocations and invasions, it is critical to understand the genomic consequences of hybridization and mechanisms of range expansion. Conventional wisdom is that high genetic drift and loss of genetic diversity due to repeated founder effects will constrain introduced species. However, reduced genetic variation can be countered by behavioral aspects and admixture with other distinct populations.

View Article and Find Full Text PDF

We sought to assess effects of fragmentation and quantify the contribution of ecological processes to community assembly by measuring species richness, phylogenetic, and phenotypic diversity of species found in local and regional plant communities. Specifically, our fragmented system is Craters of the Moon National Monument and Preserve, Idaho, USA. CRMO is characterized by vegetated islands, kipukas, that are isolated in a matrix of lava.

View Article and Find Full Text PDF

An important focus of community ecology, including invasion biology, is to investigate functional trait diversity patterns to disentangle the effects of environmental and biotic interactions. However, a notable limitation is that studies usually rely on a small and easy-to-measure set of functional traits, which might not immediately reflect ongoing ecological responses to changing abiotic or biotic conditions, including those that occur at a molecular or physiological level. We explored the potential of using the diversity of expressed genes-functional genomic diversity (FGD)-to understand ecological dynamics of a recent and ongoing alpine invasion.

View Article and Find Full Text PDF