5 results match your criteria: "Department of Biological Sciences University of Delaware Newark[Affiliation]"

Hematopoietic stem and progenitor cells (HSPCs) are desirable targets for gene therapy but are notoriously difficult to target and transfect. Existing viral vector-based delivery methods are not effective in HSPCs due to their cytotoxicity, limited HSPC uptake and lack of target specificity (tropism). Poly(lactic--glycolic acid) (PLGA) nanoparticles (NPs) are attractive, nontoxic carriers that can encapsulate various cargo and enable its controlled release.

View Article and Find Full Text PDF

Age is a major risk factor for cataract (ARC). However, the influence of aging on the lens transcriptome is under studied. Lens epithelial (LEC) and fiber cells (LFC) were isolated from young (3 month old) and aged (24 month old) C57BL/6J mice, and the transcriptome elucidated via RNAseq.

View Article and Find Full Text PDF

Purpose: Current newborn screening (NBS) for mucopolysaccharidosis type I (MPSI) has very high false positive rates and low positive predictive values (PPVs). To improve the accuracy of presymptomatic prediction for MPSI, we propose an NBS tool based on known biomarkers, alpha-L-iduronidase enzyme activity (IDUA) and level of the glycosaminoglycan (GAG) heparan sulfate (HS).

Methods: We developed the NBS tool using measures from dried blood spots (DBS) of 5000 normal newborns from Gifu Prefecture, Japan.

View Article and Find Full Text PDF

Distinct subcellular localization and subsequent translational control of 3' UTR variants of mRNA encoding brain-derived neurotrophic factor (BDNF) are critical for the development and plasticity of neurons. Although the processes that lead to preferential localization of BDNF have been well studied, it is still not clear how neurons ensure differential BDNF production in a spatial-specific manner. Here, we identified that microRNA (miRNA)-206 has the potential to specifically regulate BDNF with a long 3' UTR without affecting its short 3' UTR counterpart.

View Article and Find Full Text PDF

Heterogeneous hydrogels with desired matrix complexity are studied for a variety of biomimetic materials. Despite the range of such microstructured materials described, few methods permit independent control over microstructure and microscale mechanics by precisely controlled, single-step processing methods. Here, a phototriggered crosslinking methodology that traps microstructures in liquid-liquid phase-separated solutions of a highly elastomeric resilin-like polypeptide (RLP) and poly(ethylene glycol) (PEG) is reported.

View Article and Find Full Text PDF