2 results match your criteria: "Department of Bioengineering Faculty of Engineering Ege University Izmir Turkey.[Affiliation]"

The organic-inorganic hybrid materials have been used in different fields to immobilize biomolecules since they offer many advantages. The aim of this study was to optimize and characterize the alginate-silica hybrid hydrogel as a stable and injectable form for microfluidic systems using internal gelation method and increase the stability and activity of immobilized enzyme for biocatalytic conversions as well. Characterization was carried out by scanning electron microscopy, energy dispersive spectroscopy/mapping, Brunauer-Emmett-Teller, Barrett-Joyner-Halenda, and Fourier-transform infrared spectroscopy analyses, and the shrinkages of monoliths were evaluated.

View Article and Find Full Text PDF

The aim of this study was to formulate silica and alginate hydrogels for immobilization of β-glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were characterized in terms of surface area and pore size. The addition of polyethylene oxide improved the mechanical strength of the silica gels and 68% of the initial activity of the enzyme was preserved after immobilizing into tetraethyl orthosilicate-polyethylene oxide matrix where the relative activity in alginate beads was 87%.

View Article and Find Full Text PDF