375,098 results match your criteria: "Department of Bioengineering; University of California[Affiliation]"

Extracellular vesicles (EVs) are emerging as crucial biomarkers in cancer diagnostics and therapeutics with their heterogeneity presenting both challenges and opportunities in prostate cancer research. However, existing methods for isolating and characterizing EV subtypes have been limited by inefficient separation and inadequate proteomic analysis. Here we show an optimized centrifugal microfluidic device, Exodisc, that efficiently isolates large quantities of EV subtypes from particle-enriched medium, enabling comprehensive proteomic analysis of small (EV-S, 20-200 nm) and large (EV-L, >200 nm) EVs.

View Article and Find Full Text PDF

Purpose: We hypothesised that applying radiomics to [F]PSMA-1007 PET/CT images could help distinguish Unspecific Bone Uptakes (UBUs) from bone metastases in prostate cancer (PCa) patients. We compared the performance of radiomic features to human visual interpretation.

Materials And Methods: We retrospectively analysed 102 hormone-sensitive PCa patients who underwent [F]PSMA-1007 PET/CT and exhibited at least one focal bone uptake with known clinical follow-up (reference standard).

View Article and Find Full Text PDF

Fabrication of Hypoxia-Mimicking Supramolecular Hydrogels for Cartilage Repair.

ACS Appl Bio Mater

January 2025

Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.

Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.

View Article and Find Full Text PDF

The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.

View Article and Find Full Text PDF

Use of AI in Cardiac CT and MRI: A Scientific Statement from the ESCR, EuSoMII, NASCI, SCCT, SCMR, SIIM, and RSNA.

Radiology

January 2025

From the Department of Radiology, University of Washington, UW Medical Center-Montlake, Seattle, Wash (D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC), University of Washington, Seattle, Wash (D.M.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (M.v.A.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (M.H.); Department of Radiology, Mayo Clinic, Rochester, Minn (T.L., E.E.W.); Departments of Cardiology and Radiology, Royal Brompton Hospital, London, United Kingdom (E.D.N.); School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom (E.D.N.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University of Cagliari, Cagliari, Italy (L.S.); Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 Postbus 30 001, 9700 RB Groningen, the Netherlands (R.V.); Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.H.).

Artificial intelligence (AI) offers promising solutions for many steps of the cardiac imaging workflow, from patient and test selection through image acquisition, reconstruction, and interpretation, extending to prognostication and reporting. Despite the development of many cardiac imaging AI algorithms, AI tools are at various stages of development and face challenges for clinical implementation. This scientific statement, endorsed by several societies in the field, provides an overview of the current landscape and challenges of AI applications in cardiac CT and MRI.

View Article and Find Full Text PDF

Tracking Liver Fibrosis with Photoacoustic Microscopy.

Radiology

January 2025

Department of Biomedical Engineering, Duke University, 100 Science Dr, Hudson Hall Annex 260, Durham, NC 27710.

View Article and Find Full Text PDF

Open-Source Large Language Models in Radiology: A Review and Tutorial for Practical Research and Clinical Deployment.

Radiology

January 2025

From the University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201 (C.H.S., A.K., V.P., F.X.D.); Departments of Radiology, Medicine, and Biomedical Data Science, Stanford University, Palo Alto, Calif (C.P.L.); Department of Computer Science and Electrical Engineering, College of Engineering and Information Technology, University of Maryland, Baltimore County, Baltimore, Md (A.J.); Department of Computer Science, University of Maryland, College Park, College Park, Md (H.H.); and University of Maryland Institute for Health Computing, University of Maryland, North Bethesda, Md (H.H., F.X.D.).

Integrating large language models (LLMs) into health care holds substantial potential to enhance clinical workflows and care delivery. However, LLMs also pose serious risks if integration is not thoughtfully executed, with complex challenges spanning accuracy, accessibility, privacy, and regulation. Proprietary commercial LLMs (eg, GPT-4 [OpenAI], Claude 3 Sonnet and Claude 3 Opus [Anthropic], Gemini [Google]) have received much attention from researchers in the medical domain, including radiology.

View Article and Find Full Text PDF

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate whether the locking femoral neck plate (LFNP) can be an alternative fixation method to the cannulated screws with a medial buttress plate. For this purpose, we compared biomechanically the LFNP and cannulated screws with or without a medial buttress plate in Pauwels type 3 femoral neck fractures.

Methods: A vertical fracture model was created at an 80-degree angle to the femoral neck in 28 synthetic bone models.

View Article and Find Full Text PDF

This study aimed to elucidate the complexity of the humoral immune response in COVID-19 patients with varying disease trajectories using a SARS-CoV-2 whole proteome peptide microarray chip. The microarray, containing 5347 peptides spanning the entire SARS-CoV-2 proteome and key variants of concern, was used to analyze IgG responses in 10 severe-to-recovered, 9 nonsevere-to-severe cases, and 10 control case (5 pre-pandemic and 5 SARS-CoV-2-negative) plasma samples. We identified 1151 IgG-reactive peptides corresponding to 647 epitopes, with 207 peptides being cross-reactive across 124 epitopes.

View Article and Find Full Text PDF

Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .

View Article and Find Full Text PDF

Hyperpolarized Xe MRI/MRS enables quantitative mapping of function in lung airspaces, membrane tissue, and red blood cells (RBCs) within the pulmonary capillaries. The RBC signal also exhibits cardiogenic oscillations that are reduced in pre-capillary pulmonary hypertension (PH). This effect is obscured in patients with concomitant defects in transfer from airspaces to RBCs, which increase RBC oscillation amplitudes.

View Article and Find Full Text PDF

The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease.

View Article and Find Full Text PDF

The stomach is responsible for physically and chemically processing the ingested meal before controlled emptying into the duodenum through the pyloric sphincter. An incompetent pylorus allows reflux from the duodenum back into the stomach, and if the amount of reflux is large enough, it could alter the low pH environment of the stomach and erode the mucosal lining of the lumen. In some cases, the regurgitated contents can also reach the esophagus leading to additional complications.

View Article and Find Full Text PDF

A hypoxia-targeting and hypoxia-responsive nano-probe for tumor detection and early diagnosis.

Biomater Sci

January 2025

Zhejiang Key Laboratory of Smart BioMaterials, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.

Accurate imaging of tumor hypoxia is critical for early cancer diagnosis and clinical outcomes, highlighting the great need for its detection specificity and sensitivity. In this report, we propose a probe (HTRNP) that simultaneously has hypoxia-targeting and hypoxia-responsive capabilities to enhance the tumor hypoxia imaging efficiency. HTRNP was successfully prepared through the encapsulation of Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP), which exhibits hypoxia-dependent phosphorescence, within the amphiphilic block copolymer OPDMA-PF, which has hypoxia-targeting tertiary amine -oxide moieties and hydrophobic perfluorobenzene ring structures, which highly improved the loading content and water solubility of PtPFPP.

View Article and Find Full Text PDF

CCN5 suppresses injury-induced vascular restenosis by inhibiting smooth muscle cell proliferation and facilitating endothelial repair via thymosin β4 and Cd9 pathway.

Eur Heart J

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.

View Article and Find Full Text PDF

Background: Phaseolus lunatus, commonly known as the lima bean, is a leguminous crop cultivated in various regions worldwide. It is native to tropical America and is extensively grown in both tropical and temperate climates. Lima beans are highly nutritious and versatile, serving not only as a food and vegetable, but also as a source of green manure.

View Article and Find Full Text PDF

Preclinical and First-In-Human Imaging of Novel [F]F-FAPI-FUSCC-07 Tracer: Comparative Prospective Study with [F]F-FAPI-42 and [F]F-FAPI-74.

Mol Pharm

January 2025

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.

This study aimed to develop and evaluate a novel fibroblast activation protein (FAP)-specific tracer, fluorine-18-labeled fibroblast activation protein inhibitor-FUSCC-07 ([F]F-FAPI-FUSCC-07), for use in both preclinical and clinical settings. Preclinical evaluations were conducted to assess the stability and partition coefficient of [F]F-FAPI-FUSCC-07. Experiments involving human glioma U87MG cells demonstrated its cellular uptake and inhibitory properties.

View Article and Find Full Text PDF

Background/purpose: Early osseointegration of titanium (Ti) dental implants relies on the surface topography. Surface modification of Ti seeks to enhance bone regeneration around implants. Acid etching is the simple, less technique sensitive and cost-effective technique for surface treatment.

View Article and Find Full Text PDF

Background/purpose: Dental implants can restore both function and aesthetics in edentulous areas. However, the absence of cushioning mechanical behavior in implants may limit their clinical performance and reduce the long-term survival rates. This study aimed to establish an implant cushion mechanism that mimicked the natural periodontal ligament, utilizing the properties of composite hydrogels.

View Article and Find Full Text PDF

Antimicrobial properties of bimetallic-containing mesoporous bioglass against .

J Dent Sci

January 2025

Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.

Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.

View Article and Find Full Text PDF

Background/purpose: Osseointegration potential is greatly depended on the interaction between bone cells and dental implant surface. Since zirconia ceramic has a bioinert surface, functionalization of the surface with an organic compound allylamine was conducted to overcome its drawback of minimal interaction with the surrounding bone.

Materials And Methods: The zirconia surface was initially treated with argon glow discharge plasma (GDP), then combined with amine plasma at three different conditions of 50-W, 75-W and 85-W, to prepare the final samples.

View Article and Find Full Text PDF

Background/purpose: The use of finite element (FE) analysis in implant biomechanics offers many advantages over other approaches in simulating the complexity of clinical situations. The aim of this study was to perform an optimization analysis of dental implants with different thread designs in three types of bone quality.

Materials And Methods: The three-dimensional FE model of a mandibular bone block with a screw-shaped dental implant and superstructure was simulated.

View Article and Find Full Text PDF

Background/purpose: Studies have indicated that 50%-55% of the population have malocclusion, and approximately 5%-10% require orthognathic surgery to correct this condition. Optimal placement of plates and screws significantly affects the success rate of the surgery and postoperative stability. This study evaluates the cortical thickness of the maxillary bone in the nasomaxillary and zygomaticomaxillary buttress regions in Taiwanese patients based on cone-beam computed tomography (CBCT) images.

View Article and Find Full Text PDF

AI-Assisted Compressed Sensing Enables Faster Brain MRI for the Elderly: Image Quality and Diagnostic Equivalence with Conventional Imaging.

Int J Gen Med

January 2025

School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, People's Republic of China.

Purpose: Conventional brain MRI protocols are time-consuming, which can lead to patient discomfort and inefficiency in clinical settings. This study aims to assess the feasibility of using artificial intelligence-assisted compressed sensing (ACS) to reduce brain MRI scan time while maintaining image quality and diagnostic accuracy compared to a conventional imaging protocol.

Patients And Methods: Seventy patients from the department of neurology underwent brain MRI scans using both conventional and ACS protocols, including axial and sagittal T2-weighted fast spin-echo sequences and T2-fluid attenuated inversion recovery (FLAIR) sequence.

View Article and Find Full Text PDF