37 results match your criteria: "Department of Biochemistry and Center for Plant Science Innovation[Affiliation]"

Chilling- and dark-regulated photoprotection in Miscanthus, an economically important C grass.

Commun Biol

December 2024

Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.

Tolerance of chilling dictates the geographical distribution, establishment, and productivity of C crops. Chilling reduces enzyme rate, limiting the sink for the absorbed light energy leading to the need for quick energy dissipation via non-photochemical quenching (NPQ). Here, we characterize NPQ upon chilling in three Miscanthus accessions representing diverse chilling tolerance in C grasses.

View Article and Find Full Text PDF

Phenotypic and genomic diversity in Arabidopsis thaliana may be associated with adaptation along its wide elevational range, but it is unclear whether elevational clines are consistent among different mountain ranges. We took a multi-regional view of selection associated with elevation. In a diverse panel of ecotypes, we measured plant traits under alpine stressors (low CO partial pressure, high light, and night freezing) and conducted genome-wide association studies.

View Article and Find Full Text PDF

Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its biosynthesis and homeostasis in cell cultures, shedding light on fundamental metabolic mechanisms.

View Article and Find Full Text PDF

FatPlants: a comprehensive information system for lipid-related genes and metabolic pathways in plants.

Database (Oxford)

August 2024

Institute for Data Science and Informatics, University of Missouri, 22 Heinkel Building, Columbia, MO 65211, United States.

FatPlants, an open-access, web-based database, consolidates data, annotations, analysis results, and visualizations of lipid-related genes, proteins, and metabolic pathways in plants. Serving as a minable resource, FatPlants offers a user-friendly interface for facilitating studies into the regulation of plant lipid metabolism and supporting breeding efforts aimed at increasing crop oil content. This web resource, developed using data derived from our own research, curated from public resources, and gleaned from academic literature, comprises information on known fatty-acid-related proteins, genes, and pathways in multiple plants, with an emphasis on Glycine max, Arabidopsis thaliana, and Camelina sativa.

View Article and Find Full Text PDF

Low temperatures pose a dramatic challenge to plant viability. Chilling and freezing disrupt cellular processes, forcing metabolic adaptations reflected in alterations to membrane compositions. Understanding the mechanisms of plant cold tolerance is increasingly important due to anticipated increases in the frequency, severity, and duration of cold events.

View Article and Find Full Text PDF

Water supply limitations will likely impose increasing restrictions on future crop production, underlining a need for crops that use less water per mass of yield. Water use efficiency (WUE) therefore becomes a key consideration in developing resilient and productive crops. In this study, we hypothesized that it is possible to improve WUE under drought conditions via modulation of chloroplast signals for stomatal opening by up-regulation of non-photochemical quenching (NPQ).

View Article and Find Full Text PDF

Vitamin E biofortification: enhancement of seed tocopherol concentrations by altered chlorophyll metabolism.

Front Plant Sci

February 2024

National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

Homogentisate Phytyltransferase () catalyzes condensation of homogentisate (HGA) and phytyl diphosphate (PDP) to produce tocopherols, but can also synthesize tocotrienols using geranylgeranyl diphosphate (GGDP) in plants engineered for deregulated HGA synthesis. In contrast to prior tocotrienol biofortification efforts, engineering enhanced tocopherol concentrations in green oilseeds has proven more challenging due to the integral role of chlorophyll metabolism in supplying the PDP substrate. This study show that RNAi suppression of coupled with overexpression increases tocopherol concentrations by >two-fold in Arabidopsis seeds.

View Article and Find Full Text PDF

Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed towards fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its biosynthesis and homeostasis in cell cultures, shedding light on fundamental metabolic mechanisms.

View Article and Find Full Text PDF

Is chloroplast size optimal for photosynthetic efficiency?

New Phytol

September 2023

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA.

Improving photosynthetic efficiency has recently emerged as a promising way to increase crop production in a sustainable manner. While chloroplast size may affect photosynthetic efficiency in several ways, we aimed to explore whether chloroplast size manipulation can be a viable approach to improving photosynthetic performance. Several tobacco (Nicotiana tabacum) lines with contrasting chloroplast sizes were generated via manipulation of chloroplast division genes to assess photosynthetic performance under steady-state and fluctuating light.

View Article and Find Full Text PDF

Seasonal variation of alkaloids and polyphenol in Ephedra sinica cultivated in Japan and controlling factors.

J Nat Med

January 2023

Laboratory of Molecular Pharmacognosy, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.

We investigated the seasonal variation of alkaloids (ephedrine and pseudoephedrine), total polyphenol, and sugar contents in Ephedra sinica cultivated in Japan and elucidated the controlling factors for the variation. In 2018, alkaloids and polyphenol contents increased dramatically from May to July, decreased to their lowest in October, and slightly increased again in November. The reduction of alkaloids and polyphenol contents in the autumn may be affected by precipitation in summer.

View Article and Find Full Text PDF

High-Throughput Profiling of Metabolic Phenotypes Using High-Resolution GC-MS.

Methods Mol Biol

July 2022

Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.

Metabolite profiling provides insights into the metabolic signatures, which themselves are considered as phonotypes closely related to the agronomic and phenotypic traits such as yield, nutritional values, stress resistance, and nutrient use efficiency. GC-MS is a sensitive and high-throughput analytical platform and has been proved to be a vital tool for the analysis of primary metabolism to provide an overview of cellular and organismal metabolic status. The potential of GC-MS metabolite profiling as a tool for detecting metabolic changes in plants grown in a high-throughput plant phenotyping platform was explored.

View Article and Find Full Text PDF

The polyacetylenic lipids falcarinol, falcarindiol, and associated derivatives, termed falcarins, have a widespread taxonomical distribution in the plant kingdom and have received increasing interest for their demonstrated health-promoting properties as anti-cancer and anti-inflammatory agents. These fatty acid-derived compounds are also linked to plant pathogen resistance through their potent antimicrobial properties. Falcarin-type polyacetylenes, which contain two conjugated triple bonds, are derived from structural modifications of the common fatty acid oleic acid.

View Article and Find Full Text PDF

Better together: Protein partnerships for lineage-specific oil accumulation.

Curr Opin Plant Biol

April 2022

Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA. Electronic address:

Plant-derived oils are a major agricultural product that exist in both ubiquitous forms such as common vegetable oils and in specialized forms such as castor oil and coconut oil. These specialized oils are the result of lineage-specific metabolic pathways that create oils rich in unusual fatty acids. Considerable progress has been made toward understanding the enzymes that mediate fatty acid biosynthesis, triacylglycerol assembly, and oil storage.

View Article and Find Full Text PDF

Synthetic pheromones have been used for pest control over several decades. The conventional synthesis of di-unsaturated pheromone compounds is usually complex and costly. Camelina (Camelina sativa) has emerged as an ideal, non-food biotech oilseed platform for production of oils with modified fatty acid compositions.

View Article and Find Full Text PDF

Genetic Engineering of Lesquerella with Increased Ricinoleic Acid Content in Seed Oil.

Plants (Basel)

May 2021

Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

Seeds of castor () are enriched in oil with high levels of the industrially valuable fatty acid ricinoleic acid (18:1OH), but production of this plant is limited because of the cooccurrence of the ricin toxin in its seeds. Lesquerella () is being developed as an alternative industrial oilseed because its seeds accumulate lesquerolic acid (20:1OH), an elongated form of 18:1OH in seed oil which lacks toxins. Synthesis of 20:1OH is through elongation of 18:1OH by a lesquerella elongase, PfKCS18.

View Article and Find Full Text PDF

Mass spectrometry has increasingly been used as a tool to complement studies of sphingolipid metabolism and biological functions in plants and other eukaryotes. Mass spectrometry is now essential for comprehensive sphingolipid analytical profiling because of the huge diversity of sphingolipid classes and molecular species in eukaryotes, particularly in plants. This structural diversity arises from large differences in polar head group glycosylation as well as carbon-chain lengths of fatty acids and desaturation and hydroxylation patterns of fatty acids and long-chain bases that together comprise the ceramide hydrophobic backbone of glycosphingolipids.

View Article and Find Full Text PDF

Glycerolipids form the largest fraction of all membrane lipids and their composition changes quickly during plant development, the diurnal cycle, and in response to hormones and biotic or abiotic stress. A challenge to accurate glycerolipid measurement is that lipid-degrading enzymes tend to remain active during extraction, and special care must be taken to ensure their inactivation. Multiple extraction methods have arisen to cope with this challenge but only a few comparative studies are available in the literature.

View Article and Find Full Text PDF

Unlabelled: Staple grains with low levels of provitamin A carotenoids contribute to the global prevalence of vitamin A deficiency and therefore are the main targets for provitamin A biofortification. However, carotenoid stability during both seed maturation and postharvest storage is a serious concern for the full benefits of carotenoid biofortified grains. In this study, we utilized Arabidopsis as a model to establish carotenoid biofortification strategies in seeds.

View Article and Find Full Text PDF

Pennycress ( L.) is being domesticated as an oilseed cash cover crop to be grown in the off-season throughout temperate regions of the world. With its diploid genome and ease of directed mutagenesis using molecular approaches, pennycress seed oil composition can be rapidly tailored for a plethora of food, feed, oleochemical and fuel uses.

View Article and Find Full Text PDF

Cuticular wax and cutin are directly involved in the mechanisms by which plants acclimate to water-limited environments. However, how the two lipid forms balance their contributions to plant drought-tolerance is still not clear. The present study examined the responses of cutin monomers and cuticular waxes to drought stress in two sorghum (Sorghum bicolor (L.

View Article and Find Full Text PDF

Root NRT, NiR, AMT, GS, GOGAT and GDH expression levels reveal NO and ABA mediated drought tolerance in Brassica juncea L.

Sci Rep

April 2021

Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.

Little is known about the interactive effects of exogenous nitric oxide (NO) and abscisic acid (ABA) on nitrogen (N) metabolism and related changes at molecular and biochemical levels under drought stress. The present study highlights the independent and combined effect of NO and ABA (grouped as "nitrate agonists") on expression profiles of representative key genes known to be involved in N-uptake and assimilation, together with proline metabolism, N-NO metabolism enzyme's activity and nutrient content in polyethylene glycol (PEG) treated roots of Indian mustard (B. juncea cv.

View Article and Find Full Text PDF

Our climate is changing due to anthropogenic emissions of greenhouse gases from the production and use of fossil fuels. Present atmospheric levels of CO were last seen 3 million years ago, when planetary temperature sustained high Arctic camels. As scientists and educators, we should feel a professional responsibility to discuss major scientific issues like climate change, and its profound consequences for humanity, with students who look up to us for knowledge and leadership, and who will be most affected in the future.

View Article and Find Full Text PDF

Unraveling the metabolic and phytohormonal changes in anthers exposed to heat stress would help identify mechanisms regulating heat stress tolerance during the sensitive reproductive stage. Two spring wheat genotypes contrasting for heat tolerance were exposed to heat stress during heading in controlled environment chambers. Anthers were collected from main and primary spikes for metabolic and phytohormonal profiling.

View Article and Find Full Text PDF

Aminophospholipid ATPases (ALAs) are lipid flippases involved in transporting specific lipids across membrane bilayers. Arabidopsis () contains 12 ALAs in five phylogenetic clusters, including four in cluster 3 (ALA4-ALA7). / and /, are expressed primarily in vegetative tissues and pollen, respectively.

View Article and Find Full Text PDF

Cassava is an important staple crop in sub-Saharan Africa, due to its high productivity even on nutrient poor soils. The metabolic characteristics underlying this high productivity are poorly understood including the mode of photosynthesis, reasons for the high rate of photosynthesis, the extent of source/sink limitation, the impact of environment, and the extent of variation between cultivars. Six commercial African cassava cultivars were grown in a greenhouse in Erlangen, Germany, and in the field in Ibadan, Nigeria.

View Article and Find Full Text PDF