20 results match your criteria: "Department of Applied Physics and Applied Mathematics Columbia University[Affiliation]"

This paper proposes algorithms for estimating parameters in Earth System Models (ESMs), specifically focusing on simulations that have not yet achieved statistical equilibrium and display climate drift. The basic idea is to treat ESM time series as outputs of an autoregressive process, with parameters that depend on those of the ESM. The maximum likelihood estimate of the parameters and the associated uncertainties are derived.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the relationship between the structure and properties of electrocatalysts is essential for designing better materials, and the Aarhus University reactor for electrochemical studies using X-rays (AUREX) provides a versatile and user-friendly setup for this research.
  • The AUREX cell allows for various advanced measurement techniques like total scattering, diffraction, and absorption spectroscopy on commercial silver electrocatalysts, enabling real-time observation of structural changes during electrochemical reactions.
  • The findings reveal that silver transitions from a face-centered cubic structure to other phases under oxidative conditions, and the setup is crucial for studying these phase transitions, highlighting the need for careful beam settings to avoid interference during experiments.
View Article and Find Full Text PDF

The next-generation global climate model from the NASA Goddard Institute for Space Studies, GISS-E3, contains many improvements to resolution and physics that allow for improved representation of tropical cyclones (TCs) in the model. This study examines the properties of TCs in two different versions of E3 at different points in its development cycle, run for 20 years at 0.5° resolution, and compares these TCs with observations, the previous generation GISS model, E2, and other climate models.

View Article and Find Full Text PDF

The persistent inter-model spread in the response of global-mean surface temperature to increased CO (known as the "Equilibrium Climate Sensitivity," or "ECS") is a crucial problem across model generations. This work examines the influence of the models' present-day atmospheric circulation climatologies, and the accompanying climatological cloud radiative effects, in explaining that spread. We analyze the Coupled Model Intercomparison Project Phase 6 (CMIP6) models and find that they simulate a more poleward, and thus more realistic, edge of the Hadley cell (HC) in the Southern Hemisphere than the CMIP5 models, although the climatological shortwave cloud radiative effects are similar in the two generations of models.

View Article and Find Full Text PDF

Mixed-phase clouds play an important role in determining Arctic warming, but are parametrized in models and difficult to constrain with observations. We use two satellite-derived cloud phase metrics to investigate the vertical structure of Arctic clouds in two global climate models that use the Community Atmosphere Model version 6 (CAM6) atmospheric component. We report a model error limiting ice nucleation, produce a set of Arctic-constrained model runs by adjusting model microphysical variables to match the cloud phase metrics, and evaluate cloud feedbacks for all simulations.

View Article and Find Full Text PDF

Polyelectrolyte (PE) chains respond in a complex manner to multivalent salt environments, and this behavior depends on pH, temperature, and the presence of specific counter ions. Although much work has been done to understand the behaviour of free PE chains, it is important to reveal their behaviour on a nanoparticle's surface, where surface constraints, particle geometry, and multi-chain environment can affect their behaviour and contribute to particles' assembly states. Our work investigates, using small-angle X-ray scattering (SAXS), the morphology of PE (single-stranded DNA) chains grafted onto the surface of spherical gold nanoparticles assembled in a lattice in the presence of monovalent, divalent and trivalent salts.

View Article and Find Full Text PDF

This paper derives a criterion for deciding conditional independence that is consistent with small-sample corrections of Akaike's information criterion but is easier to apply to such problems as selecting variables in canonical correlation analysis and selecting graphical models. The criterion reduces to mutual information when the assumed distribution equals the true distribution; hence, it is called mutual information criterion (MIC). Although small-sample Kullback-Leibler criteria for these selection problems have been proposed previously, some of which are not widely known, MIC is strikingly more direct to derive and apply.

View Article and Find Full Text PDF

DNA is not only a carrier of genetic information, but also a versatile structural tool for the engineering and self-assembling of nanostructures. In this regard, the DNA template has dramatically enhanced the scalability, programmability, and functionality of the self-assembled DNA nanostructures. These capabilities provide opportunities for a wide range of biomedical applications in biosensing, bioimaging, drug delivery, and disease therapy.

View Article and Find Full Text PDF

The Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative-convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate.

View Article and Find Full Text PDF

This paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same.

View Article and Find Full Text PDF

The impact of the stratospheric quasi-biennial oscillation (QBO) on the prediction of the tropospheric Madden-Julian oscillation (MJO) is evaluated in reforecasts from nine models participating in subseasonal prediction projects, including the Subseasonal Experiment (SubX) and Subseasonal to Seasonal (S2S) projects. When MJO prediction skill is analyzed for December to February, MJO prediction skill is higher in the easterly phase of the QBO than the westerly phase, consistent with previous studies. However, the relationship between QBO phase and MJO prediction skill is not statistically significant for most models.

View Article and Find Full Text PDF
Article Synopsis
  • The cloud droplet number concentration (N) is crucial for understanding cloud physics and aerosol-cloud interactions, but current satellite methods to retrieve N are limited and uncertain.
  • A review highlights a total relative uncertainty of 78% in pixel-level retrievals for specific cloud types, which decreases to 54% for larger area averages, but accuracy against in situ observations is better than indicated by retrievals.
  • Dominant errors in retrieving N stem from inaccuracies in cloud droplet effective radius (r), and improving these retrievals is essential; the review also suggests recommendations and explores new methods for better N estimates using both satellite and ground-based data.
View Article and Find Full Text PDF

The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Niño 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real-time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency.

View Article and Find Full Text PDF

A lagged ensemble is an ensemble of forecasts from the same model initialized at different times but verifying at the same time. The skill of a lagged ensemble mean can be improved by assigning weights to different forecasts in such a way as to maximize skill. If the forecasts are bias corrected, then an unbiased weighted lagged ensemble requires the weights to sum to one.

View Article and Find Full Text PDF

We propose a general methodology for determining the lagged ensemble that minimizes the mean square forecast error. The MSE of a lagged ensemble is shown to depend only on a quantity called the cross-lead error covariance matrix, which can be estimated from a short hindcast data set and parameterized in terms of analytic functions of time. The resulting parameterization allows the skill of forecasts to be evaluated for an arbitrary ensemble size and initialization frequency.

View Article and Find Full Text PDF

Consistent long-term estimates of fire emissions are important to understand the changing role of fire in the global carbon cycle and to assess the relative importance of humans and climate in shaping fire regimes. However, there is limited information on fire emissions from before the satellite era. We show that in the Amazon region, including the Arc of Deforestation and Bolivia, visibility observations derived from weather stations could explain 61% of the variability in satellite-based estimates of bottom-up fire emissions since 1997 and 42% of the variability in satellite-based estimates of total column carbon monoxide concentrations since 2001.

View Article and Find Full Text PDF

Modeling the QBO-Improvements resulting from higher-model vertical resolution.

J Adv Model Earth Syst

September 2016

NASA Goddard Institute for Space Studies New York New York USA; Center for Climate Systems Research, Columbia University New York New York USA.

Using the NASA Goddard Institute for Space Studies (GISS) climate model, it is shown that with proper choice of the gravity wave momentum flux entering the stratosphere and relatively fine vertical layering of at least 500 m in the upper troposphere-lower stratosphere (UTLS), a realistic stratospheric quasi-biennial oscillation (QBO) is modeled with the proper period, amplitude, and structure down to tropopause levels. It is furthermore shown that the specified gravity wave momentum flux controls the QBO period whereas the width of the gravity wave momentum flux phase speed spectrum controls the QBO amplitude. Fine vertical layering is required for the proper downward extension to tropopause levels as this permits wave-mean flow interactions in the UTLS region to be resolved in the model.

View Article and Find Full Text PDF

As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state.

View Article and Find Full Text PDF

As part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state.

View Article and Find Full Text PDF

Centrifugally driven interchange instabilities are observed in a laboratory plasma confined by a dipole magnetic field. The instabilities appear when an equatorial mesh is biased to drive a radial current that causes rapid axisymmetric plasma rotation. The observed instabilities are quasicoherent in the laboratory frame of reference; they have global radial mode structures and low azimuthal mode numbers, and they are modified by the presence of energetic, magnetically confined electrons.

View Article and Find Full Text PDF