3 results match your criteria: "Department of Anatomy and Cell Biology. University of Illinois at Chicago[Affiliation]"

Background: We recently found that loss of endothelial cell disrupts neurovascular and synaptic function. However, whether endothelial is detrimental or protective for neural function under physiological conditions is unknown. Therefore, the goal of this study was to determine the role of endothelial cell in regulating brain function in vivo.

View Article and Find Full Text PDF

Background Brain repair mechanisms fail to promote recovery after stroke, and approaches to induce brain regeneration are scarce. Mesenchymal stem cells (MSC) are thought to be a promising therapeutic option. However, their efficacy is not fully elucidated, and the mechanism underlying their effect is not known.

View Article and Find Full Text PDF

Abnormal expansion of a polyglutamine tract in huntingtin (Htt) protein results in Huntington's disease (HD), an autosomal dominant neurodegenerative disorder involving progressive loss of motor and cognitive function. Contrasting with the ubiquitous tissue expression of polyglutamine-expanded Htt, HD pathology is characterized by the increased vulnerability of specific neuronal populations within the striatum and the cerebral cortex. Morphological, biochemical, and functional characteristics of neurons affected in HD that might render these cells more vulnerable to the toxic effects of polyglutamine-Htt are covered in this review.

View Article and Find Full Text PDF