35 results match your criteria: "Departamento de Quimica Inorganica - Instituto Universitario de Materiales[Affiliation]"
Chem Commun (Camb)
March 2016
Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, E-03690 San Vicente del Raspeig, Spain.
The gate-opening phenomenon in ZIFs is of paramount importance to understand their behavior in industrial molecular separations. Here we show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N2 pressure.
View Article and Find Full Text PDFChemistry
October 2015
Department of Inorganic Chemistry, TU Dresden, Bergstrasse 66, 01069 Dresden (Germany), Fax: (+49) 351-463-37287.
A novel synthesis method for ordered mesoporous carbons is presented. The inverse replication of a silica template was achieved using the carbonization of sucrose within mesoporous KIT-6. Instead of liquid acid etching, as in classical nanocasting, a novel dry chlorine etching procedure for template removal is presented for the first time.
View Article and Find Full Text PDFChem Commun (Camb)
September 2015
Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, E-03690 San Vicente del Raspeig, Spain.
One of the main concerns in the technological application of several metal-organic frameworks (MOFs) relates to their structural instability under pressure (after a conforming step). Here we report for the first time that mechanical instability can be highly improved via nucleation and growth of MOF nanocrystals in the confined nanospace of activated carbons.
View Article and Find Full Text PDFNat Commun
March 2015
Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, E-03690 San Vicente del Raspeig, Spain.
Natural methane hydrates are believed to be the largest source of hydrocarbons on Earth. These structures are formed in specific locations such as deep-sea sediments and the permafrost based on demanding conditions of high pressure and low temperature. Here we report that, by taking advantage of the confinement effects on nanopore space, synthetic methane hydrates grow under mild conditions (3.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2015
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Napoli, Italy.
Fixed-bed thermodynamic CO2 adsorption tests were performed in model flue-gas onto Filtrasorb 400 and Nuchar RGC30 activated carbons (AC) functionalized with [Hmim][BF4] and [Emim][Gly] ionic liquids (IL). A comparative analysis of the CO2 capture results and N2 porosity characterization data evidenced that the use of [Hmim][BF4], a physical solvent for carbon dioxide, ended up into a worsening of the parent AC capture performance, due to a dominating pore blocking effect at all the operating temperatures. Conversely, the less sterically-hindered and amino acid-based [Emim][Gly] IL was effective in increasing the AC capture capacity at 353 K under milder impregnation conditions, the beneficial effect being attributed to both its chemical affinity towards CO2 and low pore volume reduction.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2015
Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain. Electronic address:
The effect of the metal precursor (presence or absence of chlorine) on the preferential oxidation of CO in the presence of H2 over Pt/CeO2 catalysts has been studied. The catalysts are prepared using (Pt(NH3)4)(NO3)2 and H2PtCl6, as precursors, in order to ascertain the effect of the chlorine species on the chemical properties of the support and on the catalytic behavior of these systems in the PROX reaction. The results show that chloride species exert an important effect on the redox properties of the oxide support due to surface chlorination.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2012
Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain.
Ni-based catalysts supported on Zn-modified alumina were investigated in the ethanol steam reforming reaction. A commercial γ-alumina was impregnated with different amounts of zinc nitrate (0, 2, 5, 10, 15, 20 wt.% on Zn basis), calcined, and then impregnated with nickel nitrate aqueous solutions.
View Article and Find Full Text PDFEnviron Sci Technol
December 2011
Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain.
The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH(3) breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups.
View Article and Find Full Text PDFChem Commun (Camb)
June 2011
Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Ap. 99, E-03080 Alicante, Spain.
Although metal-organic framework (MOF) materials have been postulated as superior to any other sorbent for CO(2) adsorption at room temperature, here we prove that the appropriate selection of the raw material and the synthesis conditions allows the preparation of carbon molecular sieves (CMSs) with adsorption capacity, on a volumetric basis, highly exceeding those reported in the literature for MOFs. Furthermore, the excellent sorption properties of CMSs over the whole pressure range (up to 50 bar) are fully reversible after different adsorption/desorption cycles.
View Article and Find Full Text PDFChemSusChem
August 2010
Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, Spain.
A series of carbon molecular sieves (CMSs) has been prepared, either as powders or monoliths, from petroleum pitch using potassium hydroxide as the activating agent. The CMS monoliths are prepared without the use of a binder based on the self-sintering ability of the mesophase pitch. Characterization results show that these CMSs combine a large apparent surface area (up to ca.
View Article and Find Full Text PDF