12,131 results match your criteria: "Delft University of Technology[Affiliation]"

Health care is under pressure due to an aging population with an increasing prevalence of chronic diseases, including cardiovascular disease. Smoking and physical inactivity are 2 key preventable risk factors for cardiovascular disease. Yet, as with most health behaviors, they are difficult to change.

View Article and Find Full Text PDF

Background: The maintenance of a healthy lifestyle significantly influences pregnancy outcomes. Certain pregnant women are more at risk of engaging in unhealthy behaviors due to factors such as having a low socioeconomic position and low social capital. eHealth interventions tailored to pregnant women affected by these vulnerability factors can provide support and motivation for healthier choices.

View Article and Find Full Text PDF

Understanding microbial syngas fermentation rates.

Appl Microbiol Biotechnol

December 2024

Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.

Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the microbial kinetics.

View Article and Find Full Text PDF

Neuronal activity in the highly organized networks of the central nervous system is the vital basis for various functional processes, such as perception, motor control, and cognition. Understanding interneuronal connectivity and how activity is regulated in the neuronal circuits is crucial for interpreting how the brain works. Multi-electrode arrays (MEAs) are particularly useful for studying the dynamics of neuronal network activity and their development as they allow for real-time, high-throughput measurements of neural activity.

View Article and Find Full Text PDF

Members of the genus are commonly found in natural aquatic ecosystems. However, they are also frequently present in non-chlorinated drinking water distribution systems. High densities of these bacteria indicate favorable conditions for microbial regrowth, which is considered undesirable.

View Article and Find Full Text PDF

Drilling wells in unconsolidated formations is commonly undertaken to extract drinking water and other applications, such as aquifer thermal energy storage (ATES). To increase the efficiency of an ATES system, the drilling campaigns are targeting greater depths and enlarging the wellbore diameter in the production section to enhance the flow rates. In these cases, wells are more susceptible to collapse.

View Article and Find Full Text PDF

This study aimed to develop an open-source algorithm for the pressure-reactivity index (PRx) to monitor cerebral autoregulation (CA) in pediatric severe traumatic brain injury (sTBI) and compared derived optimal cerebral perfusion pressure (CPPopt) with real-time CPP in relation to long-term outcome. Retrospective study in children (< 18 years) with sTBI admitted to the pediatric intensive care unit (PICU) for intracranial pressure (ICP) monitoring between 2016 and 2023. ICP was analyzed on an insult basis and correlated with outcome.

View Article and Find Full Text PDF

Ferrocene-decorated graphene nanosheets built by edge-to-face π-π interaction for room temperature ppb-level NO sensing.

Talanta

December 2024

National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China. Electronic address:

The development of materials toward ppb-level nitric oxide (NO) sensing at room temperature remains in high demand for the monitoring of respiratory inflammatory diseases. In order to find an iron-containing molecule without steric hindrance to combine with graphene for room temperature NO gas sensing, here a supramolecular assembly of ferrocene (Fc) and reduced graphene oxide (rGO) was designed and prepared for NO sensing. The assembly of Fc/rGO was characterized using FT-IR, TEM, and XPS measurements.

View Article and Find Full Text PDF

A handheld fiber-optic tissue sensing device for spine surgery.

PLoS One

December 2024

Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands.

The demographic shift has increased the demand for surgical interventions to address age-related degenerative diseases, such as spinal fusion. Accurate placement of pedicle screws, crucial for successful spinal fusion, varies widely with physician experience. Integrating tissue sensing into spine surgical instruments allows intraoperative examination of tissue properties, providing surgeons with additional information to prevent screw misplacement.

View Article and Find Full Text PDF

A curved compliant spinal bone anchor to enhance fixation strength.

PLoS One

December 2024

Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands.

Pedicle screws have long been established as the gold standard for spinal bone fixation. However, their fixation strength can be compromised in cases of low bone density, particularly in osteoporotic bone, due to the reliance on a micro-shape lock between the screw thread and the surrounding bone. To address this challenge, we propose augmenting conventional pedicles screws with a curved compliant anchor.

View Article and Find Full Text PDF

Objective: Analyzing population trends of bone shape variation can provide valuable insights into growth processes. This review aims to overview state-of-the-art spatiotemporal statistical shape modeling techniques, emphasizing their application to 3D skeletal structures during healthy growth.

Methods: We searched PubMed and Scopus for articles on statistical shape modeling using a pediatric spatiotemporal dataset of 3D healthy bone models.

View Article and Find Full Text PDF

Advanced 3D-Printed Flexible Composite Electrodes of Diamond, Carbon Nanotubes, and Thermoplastic Polyurethane.

ACS Appl Polym Mater

December 2024

Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

In this work, we pioneered the preparation of diamond-containing flexible electrodes using 3D printing technology. The herein developed procedure involves a unique integration of boron-doped diamond (BDD) microparticles and multi-walled carbon nanotubes (CNTs) within a flexible polymer, thermoplastic polyurethane (TPU). Initially, the process for the preparation of homogeneous filaments with optimal printability was addressed, leading to the development of two TPU/CNT/BDD composite electrodes with different CNT:BDD weight ratios (1:1 and 1:2), which were benchmarked against a TPU/CNT electrode.

View Article and Find Full Text PDF

Multifunctional, biocompatible magnetic materials, such as iron oxide nanoparticles (IONPs), hold great potential for biomedical applications including diagnostics (e.g., MRI) and cancer therapy.

View Article and Find Full Text PDF

The demand for innovative synthetic polymers with improved properties is high, but their structural complexity and vast design space hinder rapid discovery. Machine learning-guided molecular design is a promising approach to accelerate polymer discovery. However, the scarcity of labeled polymer data and the complex hierarchical structure of synthetic polymers make generative design particularly challenging.

View Article and Find Full Text PDF

Purpose: Evaluate the feasibility of quantification of Relaxation Along a Fictitious Field in the 2nd rotating frame (RAFF2) relaxation times in the human myocardium at 3 T.

Methods: mapping was performed using a breath-held ECG-gated acquisition of five images: one without preparation, three preceded by RAFF2 trains of varying duration, and one preceded by a saturation prepulse. Pixel-wise maps were obtained after three-parameter exponential fitting.

View Article and Find Full Text PDF

For millennia, alloying has been the greatest gift from metallurgy to humankind: a process of mixing elements, propelling our society from the Bronze Age to the Space Age. Dealloying, by contrast, acts like a penalty: a corrosive counteracting process of selectively removing elements from alloys or compounds, degrading their structural integrity over time. We show that when these two opposite metallurgical processes meet in a reactive vapor environment, profound sustainable alloy design opportunities become accessible, enabling bulk nanostructured porous alloys directly from oxides, with zero carbon footprint.

View Article and Find Full Text PDF

Development of a standard set of key work-related outcomes for use in practice for patients with cardiovascular disease: a modified Delphi study.

J Patient Rep Outcomes

December 2024

Department of Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.

Background: To facilitate the maintenance or resumption of participation in work for patients with cardiovascular disease (CVD), there is a need for high-quality work-focused healthcare. According to the concept of value-based healthcare, quality of care can be enhanced by understanding the outcomes that matter most to patients. However, a major challenge in assessing quality of work-focused healthcare in practice is the lack of consensus on which work-related outcomes should be measured.

View Article and Find Full Text PDF

Automated noise modelling using a triangulated terrain model.

Geo Spat Inf Sci

December 2023

3D Geoinformation, Delft University of Technology, Faculty of Architecture and the Built Environment, Delft, The Netherlands.

Noise simulations are an important part of noise studies that investigate the impact of noise sources on the environment. In noise simulation, noise levels at receiver points are calculated based on the noise propagation paths between the receiver and source points. These paths are derived from the height of the terrain.

View Article and Find Full Text PDF

Background: In-feed antibiotic growth promoters (AGPs) have been a cornerstone in the livestock industry due to their role in enhancing growth and feed efficiency. However, concerns over antibiotic resistance have driven a shift away from AGPs toward natural alternatives. Despite the widespread use, the exact mechanisms of AGPs and alternatives are not fully understood.

View Article and Find Full Text PDF

We present a technique called photoacoustic vector-flow (PAVF) to quantify the speed and direction of flowing optical absorbers at each pixel from acoustic-resolution PA images. By varying the receiving angle at each pixel in post-processing, we obtain multiple estimates of the phase difference between consecutive frames. These are used to solve the overdetermined photoacoustic Doppler equation with a least-squares approach to estimate a velocity vector at each pixel.

View Article and Find Full Text PDF

The growing integration of Information and Communication Technology into Operational Technology environments in electrical substations exposes them to new cybersecurity threats. This paper presents a comprehensive dataset of substation traffic, aimed at improving the training and benchmarking of Intrusion Detection Systems (IDS) installed in these facilities that are based on machine learning techniques. The dataset includes raw network captures and flows from real substations, filtered and anonymized to ensure privacy.

View Article and Find Full Text PDF

Vitrimer is a new, exciting class of sustainable polymers with healing abilities due to their dynamic covalent adaptive networks. However, a limited choice of constituent molecules restricts their property space and potential applications. To overcome this challenge, an innovative approach coupling molecular dynamics (MD) simulations and a novel graph variational autoencoder (VAE) model for inverse design of vitrimer chemistries with desired glass transition temperature (T) is presented.

View Article and Find Full Text PDF

Cellular biomaterials offer unique properties for diverse biomedical applications. However, their complex viscoelastic behavior requires careful consideration for design optimization. This study explores the effective viscoelastic response of two promising unit cell designs (tetrahedron-based and octet-truss) suitable for high porosity and strong mechanics.

View Article and Find Full Text PDF

Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks.

ACS Appl Mater Interfaces

December 2024

dsm-firmenich Science & Research, Biotechnology, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands.

The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-linking sites. This approach, while highly successful in generating a wealth of knowledge regarding the links between design features and material properties, has some inherent limitations related to its low throughput. This slows down the pace of the development of recombinant structural proteins.

View Article and Find Full Text PDF

2D Carbon Phosphide for Trapping Sulfur in Rechargeable Li-S Batteries: Structure Design and Interfacial Chemistry.

ACS Appl Mater Interfaces

December 2024

Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Rechargeable lithium-sulfur batteries (LiSBs) assembled with earth-abundant and safe Li anodes are less prone to form dendrites on the surface, and sulfur-containing cathodes offer considerable potential for achieving high energy densities. Nevertheless, suitable sulfur host materials and their interaction with electrolytes are at present key factors that retard the commercial introduction of these batteries. Here we propose a two-dimensional metallic carbon phosphorus framework, namely, 2D CP, as a promising sulfur host material for inhibiting the shuttle effect and improving electronic conductivity in high-performance Li-S batteries.

View Article and Find Full Text PDF