60,465 results match your criteria: "Defence Institute of Physiology & Allied Sciences.[Affiliation]"

Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications.

Curr Hematol Malig Rep

January 2025

Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Purpose Of Review: More than a decade following the discovery of Calreticulin (CALR) mutations as drivers of myeloproliferative neoplasms (MPN), advances in the understanding of CALR-mutant MPN continue to emerge. Here, we summarize recent advances in mehanistic understanding and in targeted therapies for CALR-mutant MPN.

Recent Findings: Structural insights revealed that the mutant CALR-MPL complex is a tetramer and the mutant CALR C-terminus is exposed on the cell surface.

View Article and Find Full Text PDF

Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored.

View Article and Find Full Text PDF

Specialized killing across the domains of life by the type VI secretion systems of Pseudomonas aeruginosa.

Biochem J

January 2025

Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada.

Type VI secretion systems (T6SSs) are widespread bacterial protein secretion machines that inject toxic effector proteins into nearby cells, thus facilitating both bacterial competition and virulence. Pseudomonas aeruginosa encodes three evolutionarily distinct T6SSs that each export a unique repertoire of effectors. Owing to its genetic tractability, P.

View Article and Find Full Text PDF

Mucosal immune response in biology, disease prevention and treatment.

Signal Transduct Target Ther

January 2025

The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.

The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body.

View Article and Find Full Text PDF

The vestibular system is vital for maintaining stable vision during daily activities. When peripheral vestibular input is lost, patients initially experience impaired gaze stability due to reduced effectiveness of the vestibular-ocular-reflex pathway. To aid rehabilitation, patients are often prescribed gaze-stabilization exercises during which they make self-initiated active head movements.

View Article and Find Full Text PDF

Chromosome-level genome assemblies of sunflower oilseed and confectionery cultivars.

Sci Data

January 2025

Institute of Crop Science, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China.

The sunflower (Helianthus annuus L.), belonging to the Asteraceae family, is the world's fourth most important oil crop. Sunflower cultivars are categorized into oilseed and confectionery types.

View Article and Find Full Text PDF

Background: Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.

View Article and Find Full Text PDF

CFTR as a therapeutic target for severe lung infection.

Am J Physiol Lung Cell Mol Physiol

January 2025

Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is - in addition to its well-established roles in the lung airway and extrapulmonary organs - increasingly recognized as a key regulator of alveolar homeostasis and defense.

View Article and Find Full Text PDF

From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases.

View Article and Find Full Text PDF

Non-adapted bacterial infection suppresses plant reproduction.

Sci Adv

January 2025

School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Environmental stressors, including pathogens, substantially affect the growth of host plants. However, how non-adapted bacteria influence nonhost plants has not been reported. Here, we reveal that infection of flowers by pv.

View Article and Find Full Text PDF

Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.

View Article and Find Full Text PDF

African swine fever (ASF) is a lethal disease of domestic pigs that is currently challenging swine production in large areas of Eurasia. The causative agent, ASF virus (ASFV), is a large, double-stranded and structurally complex virus. The ASFV genome encodes for more than 160 proteins; however, the functions of most of these proteins are still in the process of being characterized.

View Article and Find Full Text PDF

Anti-phage defense systems are widespread in bacteria due to the latter continuous adaptation to infection by bacteriophages (phages). has a high degree of intrinsic antibiotic resistance, which makes phage therapy relevant for the treatment of infections caused by this species. Studying the array of anti-phage defense systems that could be found in helps in better adapting the phages to the systems present in the pathogenic bacteria.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.

View Article and Find Full Text PDF

Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.

View Article and Find Full Text PDF

SARS-CoV-2 infection induces a humoral immune response, producing virus-specific antibodies such as IgM, IgG, and IgA. IgA antibodies are present at mucosal sites, protecting against respiratory and other mucosal infections, including SARS-CoV-2, by neutralizing viruses or impeding attachment to epithelial cells. Since SARS-CoV-2 spreads through the nasopharynx, the specific IgAs of SARS-CoV-2 are produced quickly after infection, effectively contributing to virus neutralization.

View Article and Find Full Text PDF

The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.

View Article and Find Full Text PDF

Aim: This article aims to explore the role of the human gut microbiota (GM) in the pathogenesis of neurological, psychiatric, and neurodevelopmental disorders, highlighting its influence on health and disease, and investigating potential therapeutic strategies targeting GM modulation.

Materials And Methods: A comprehensive analysis of the gut microbiota's composition and its interaction with the human body, particularly, its role in neurological and psychiatric conditions, is provided. The review discusses factors influencing GM composition, including birth mode, breastfeeding, diet, medications, and geography.

View Article and Find Full Text PDF

Strategies Used by SARS-CoV-2 to Evade the Innate Immune System in an Evolutionary Perspective.

Pathogens

December 2024

Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.

By the end of 2019, the COVID-19 pandemic, resulting from the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), had diffused widely across the globe, with 770 million infected individuals and over 7 million deaths reported. In addition to its high infectivity and pathogenicity and its rapid mutation rate, the unique capacity of SARS-CoV-2 to circumvent the immune system has also contributed to the widespread nature of this pandemic. SARS-CoV-2 elicits the onset of innate immune system activation and initiates antiviral responses once it has infected the host.

View Article and Find Full Text PDF

Although the etiological relevance of the detection of microsporidia in human stool samples remains uncertain, the immunological status of patients has been posited as an important determinant of potential clinical impact of these parasites. To further assess the interplay between the epidemiology of microsporidia and immunological markers, we conducted a study utilizing real-time PCR targeting , , , and , combined in a single fluorescence channel. The study involved a cohort of 595 clinically and immunologically well-characterized Ghanaian HIV patients, alongside 82 HIV-negative control individuals from Ghana.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant () is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant , serving as the last line of defense. However, reports of colistin-resistant strains of have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens.

View Article and Find Full Text PDF

In Silico Conotoxin Studies: Progress and Prospects.

Molecules

December 2024

Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.

Cone snails of the genus have evolved to produce structurally distinct and functionally diverse venom peptides for defensive and predatory purposes. This nature-devised delicacy enlightened drug discovery and for decades, the bioactive cone snail venom peptides, known as conotoxins, have been widely explored for their therapeutic potential, yet we know very little about them. With the augmentation of computational algorithms from the realms of bioinformatics and machine learning, in silico strategies have made substantial contributions to facilitate conotoxin studies although still with certain limitations.

View Article and Find Full Text PDF

Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system.

View Article and Find Full Text PDF

Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers ( = 18) with extensive blast exposure against unexposed military controls ( = 19).

View Article and Find Full Text PDF

The Multifaceted Impact of Bioactive Lipids on Gut Health and Disease.

Int J Mol Sci

December 2024

Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.

Bioactive lipids have a multifaceted role in health and disease and are recognized to play an important part in gut immunity and disease conditions such as inflammatory bowel disease and colon cancer. Advancements in lipidomics, enabled by mass spectrometry and chromatographic techniques, have enhanced our understanding of lipid diversity and functionality. Bioactive lipids, including short-chain fatty acids, saturated fatty acids, omega-3 fatty acids, and sphingolipids, exhibit diverse effects on inflammation and immune regulation.

View Article and Find Full Text PDF