60,271 results match your criteria: "Defence Institute of Physiology & Allied Sciences.[Affiliation]"

Skin, as the body's largest organ, acts as the primary defense mechanism against infection and injury. The maintenance of skin health heavily relies on the regulation of epidermal stem cells, crucial for ensuring epidermal homeostasis, hair regeneration, and the repair of epidermal injuries. Recent studies have placed a growing emphasis on G protein-coupled receptor (GPCR) in the context of understanding epidermal stem cells, uncovering its significant role in determining their fate.

View Article and Find Full Text PDF

Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis.

View Article and Find Full Text PDF

β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus.

Nat Immunol

January 2025

Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.

Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection.

View Article and Find Full Text PDF

Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored.

View Article and Find Full Text PDF

Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.

View Article and Find Full Text PDF

Nymphal feeding suppresses oviposition-induced indirect plant defense in rice.

Nat Commun

January 2025

State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.

Feeding and oviposition by phytophagous insects are both known to trigger defenses in plants. Whether these two defenses functionally interact remains poorly studied, although these interactions are likely important for pests with overlapping generations. Here we investigated the differences and interaction between feeding- and oviposition-induced plant defenses triggered by the brown planthopper (BPH, Nilaparvata lugens), which gregariously feeds and oviposits on rice.

View Article and Find Full Text PDF

In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.

View Article and Find Full Text PDF

Neutrophils are peripheral blood-circulating leukocytes that play a pivotal role in host defense against bacterial pathogens which upon activation, they release web-like chromatin structures called neutrophil extracellular traps (NETs). Here, we analyzed and compared the importance of myeloid differentiation factor 88 (MYD88), peptidyl arginine deiminase 4 (PAD4), and gasdermin D (GSDMD) for NET formation in vivo following sepsis and neutrophilia challenge. Injection of lipopolysaccharide (LPS)/E.

View Article and Find Full Text PDF

Glycolate oxidase (GOX) is a crucial enzyme of photorespiration involving carbon metabolism and stress responses. It is poorly understood, however, how its activities are modulated in response to oxidative stress elicited by various environmental cues. Analysis of Arabidopsis catalase-defective mutant cat2 revealed that the GOX activities were gradually repressed during the growth, which were accompanied by decreased salicylic acid (SA)-dependent cell death, suggesting photorespiratory HO may entrain negative feedback regulation of GOX in an age-dependent manner.

View Article and Find Full Text PDF

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

Breaking the cellular defense: the role of autophagy evasion in virulence.

Front Cell Infect Microbiol

January 2025

Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia.

Many pathogens have evolved sophisticated strategies to evade autophagy, a crucial cellular defense mechanism that typically targets and degrades invading microorganisms. By subverting or inhibiting autophagy, these pathogens can create a more favorable environment for their replication and survival within the host. For instance, some bacteria secrete factors that block autophagosome formation, while others might escape from autophagosomes before degradation.

View Article and Find Full Text PDF

Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications.

Curr Hematol Malig Rep

January 2025

Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Purpose Of Review: More than a decade following the discovery of Calreticulin (CALR) mutations as drivers of myeloproliferative neoplasms (MPN), advances in the understanding of CALR-mutant MPN continue to emerge. Here, we summarize recent advances in mehanistic understanding and in targeted therapies for CALR-mutant MPN.

Recent Findings: Structural insights revealed that the mutant CALR-MPL complex is a tetramer and the mutant CALR C-terminus is exposed on the cell surface.

View Article and Find Full Text PDF

Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored.

View Article and Find Full Text PDF

Specialized killing across the domains of life by the type VI secretion systems of Pseudomonas aeruginosa.

Biochem J

January 2025

Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada.

Type VI secretion systems (T6SSs) are widespread bacterial protein secretion machines that inject toxic effector proteins into nearby cells, thus facilitating both bacterial competition and virulence. Pseudomonas aeruginosa encodes three evolutionarily distinct T6SSs that each export a unique repertoire of effectors. Owing to its genetic tractability, P.

View Article and Find Full Text PDF

Mucosal immune response in biology, disease prevention and treatment.

Signal Transduct Target Ther

January 2025

The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.

The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body.

View Article and Find Full Text PDF

The vestibular system is vital for maintaining stable vision during daily activities. When peripheral vestibular input is lost, patients initially experience impaired gaze stability due to reduced effectiveness of the vestibular-ocular-reflex pathway. To aid rehabilitation, patients are often prescribed gaze-stabilization exercises during which they make self-initiated active head movements.

View Article and Find Full Text PDF

Chromosome-level genome assemblies of sunflower oilseed and confectionery cultivars.

Sci Data

January 2025

Institute of Crop Science, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China.

The sunflower (Helianthus annuus L.), belonging to the Asteraceae family, is the world's fourth most important oil crop. Sunflower cultivars are categorized into oilseed and confectionery types.

View Article and Find Full Text PDF

Background: Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.

View Article and Find Full Text PDF

CFTR as a therapeutic target for severe lung infection.

Am J Physiol Lung Cell Mol Physiol

January 2025

Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is - in addition to its well-established roles in the lung airway and extrapulmonary organs - increasingly recognized as a key regulator of alveolar homeostasis and defense.

View Article and Find Full Text PDF

From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases.

View Article and Find Full Text PDF

Non-adapted bacterial infection suppresses plant reproduction.

Sci Adv

January 2025

School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Environmental stressors, including pathogens, substantially affect the growth of host plants. However, how non-adapted bacteria influence nonhost plants has not been reported. Here, we reveal that infection of flowers by pv.

View Article and Find Full Text PDF

Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.

View Article and Find Full Text PDF

African swine fever (ASF) is a lethal disease of domestic pigs that is currently challenging swine production in large areas of Eurasia. The causative agent, ASF virus (ASFV), is a large, double-stranded and structurally complex virus. The ASFV genome encodes for more than 160 proteins; however, the functions of most of these proteins are still in the process of being characterized.

View Article and Find Full Text PDF

Anti-phage defense systems are widespread in bacteria due to the latter continuous adaptation to infection by bacteriophages (phages). has a high degree of intrinsic antibiotic resistance, which makes phage therapy relevant for the treatment of infections caused by this species. Studying the array of anti-phage defense systems that could be found in helps in better adapting the phages to the systems present in the pathogenic bacteria.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.

View Article and Find Full Text PDF