3 results match your criteria: "Dalian Medical University School of Pharmacy[Affiliation]"
Nature
June 2020
Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Regulatory T (T) cells are required to control immune responses and maintain homeostasis, but are a significant barrier to antitumour immunity. Conversely, T instability, characterized by loss of the master transcription factor Foxp3 and acquisition of proinflammatory properties, can promote autoimmunity and/or facilitate more effective tumour immunity. A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective T therapies for autoimmune disease and cancer.
View Article and Find Full Text PDFEMBO J
November 2018
Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
The endoplasmic reticulum-associated protein degradation (ERAD) is responsible for recognizing and retro-translocating protein substrates, misfolded or not, from the ER for cytosolic proteasomal degradation. HMG-CoA Reductase (HMGCR) Degradation protein-HRD1-was initially identified as an E3 ligase critical for ERAD. However, its physiological functions remain largely undefined.
View Article and Find Full Text PDFCell Rep
July 2017
Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PRC; Department of Pharmacology, Dalian Medical University School of Pharmacy, Dalian 116044, China. Electronic address:
The development of CD1d-restricted invariant natural killer T (iNKT) cells, a population that is critical for both innate and adaptive immunity, is regulated by multiple transcription factors, but the molecular mechanisms underlying how the transcriptional activation of these factors are regulated during iNKT development remain largely unknown. We found that the histone acetyltransferase general control non-derepressible 5 (GCN5) is essential for iNKT cell development during the maturation stage. GCN5 deficiency blocked iNKT cell development in a cell-intrinsic manner.
View Article and Find Full Text PDF