1,315 results match your criteria: "Daegu-Gyeongbuk Institute of Science and Technology[Affiliation]"

The brainstem is a neglected brain area in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, frontotemporal lobar degeneration and autonomic dysfunction. In Depression, several observations have been made in relation to changes in one particular the Dorsal Raphe Nucleus (DRN) which also points toward as key area in various age-related and neurodevelopmental diseases. The DRN is further thought to be related to stress regulated processes and cognitive events.

View Article and Find Full Text PDF

Electrocatalytic conversion of nitrogen oxides to value-added chemicals is a promising strategy for mitigating the human-caused unbalance of the global nitrogen-cycle, but controlling product selectivity remains a great challenge. Here we show iron-nitrogen-doped carbon as an efficient and durable electrocatalyst for selective nitric oxide reduction into hydroxylamine. Using in operando spectroscopic techniques, the catalytic site is identified as isolated ferrous moieties, at which the rate for hydroxylamine production increases in a super-Nernstian way upon pH decrease.

View Article and Find Full Text PDF

Glycyl-tRNA synthetase 1 (GARS1), a cytosolic enzyme secreted from macrophages, promotes apoptosis in cancer cells. However, the mechanism underlying GARS1 secretion has not been elucidated. Here, we report that GARS1 is secreted through unique extracellular vesicles (EVs) with a hydrodynamic diameter of 20-58 nm (mean diameter: 36.

View Article and Find Full Text PDF

Optogenetics is an advanced neuroscience technique that enables the dissection of neural circuitry with high spatiotemporal precision. Recent advances in materials and microfabrication techniques have enabled minimally invasive and biocompatible optical neural probes, thereby facilitating optogenetic research. However, conventional fabrication techniques rely on cleanroom facilities, which are not easily accessible and are expensive to use, making the overall manufacturing process inconvenient and costly.

View Article and Find Full Text PDF

An excessive and prolonged increase in glucose levels causes β-cell dysregulation, which is accompanied by impaired insulin synthesis and secretion, a condition known as glucotoxicity. Although it is known that both Lin28a and Lin28b regulate glucose metabolism, other molecular mechanisms that may protect against glucotoxicity are poorly understood. We investigated whether Lin28a overexpression can improve glucotoxicityinduced β-cell dysregulation in INS-1 and primary rat islet cells.

View Article and Find Full Text PDF

Significance: Digital holographic microscopy (DHM) is a promising technique for the study of semitransparent biological specimen such as red blood cells (RBCs). It is important and meaningful to detect and count biological cells at the single cell level in biomedical images for biomarker discovery and disease diagnostics. However, the biological cell analysis based on phase information of images is inefficient due to the complexity of numerical phase reconstruction algorithm applied to raw hologram images.

View Article and Find Full Text PDF

A Robot Operating System Framework for Secure UAV Communications.

Sensors (Basel)

February 2021

Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.

To perform advanced operations with unmanned aerial vehicles (UAVs), it is crucial that components other than the existing ones such as flight controller, network devices, and ground control station (GCS) are also used. The inevitable addition of hardware and software to accomplish UAV operations may lead to security vulnerabilities through various vectors. Hence, we propose a security framework in this study to improve the security of an unmanned aerial system (UAS).

View Article and Find Full Text PDF

In this study, a Crossed Flexural Hinge (CFH) structure was used for the design of a humanoid robot hand that can absorb any abrupt external force and that has a large payload, giving it the advantages of both rigid and compliant robots. Structural problems were identified through a 6 × 6 stiffness matrix to analyze whether CFH is suitable for use as an anthropomorphic robot hand. To reinforce the weak stiffness, a paired CFH (p-CFH) structure was proposed for the robot hand joints.

View Article and Find Full Text PDF

Unc-51-like autophagy activating kinase 1 (ULK1), a mammalian homolog of the yeast kinase Atg1, has an essential role in autophagy induction. In nutrient and growth factor signaling, ULK1 activity is regulated by various posttranslational modifications, including phosphorylation, acetylation, and ubiquitination. We previously identified glycogen synthase kinase 3 beta (GSK3B) as an upstream regulator of insulin withdrawal-induced autophagy in adult hippocampal neural stem cells.

View Article and Find Full Text PDF

Senescence marker protein 30 (SMP30) is a cell survival factor playing an important role in vitamin C synthesis and antiapoptosis. Moreover, its cytoprotective role suggests a possibility to be related to cancer cell survival. Mammary carcinoma is a common cancer in both humans and animals.

View Article and Find Full Text PDF

Anticancer effects and potential mechanisms of ginsenoside Rh2 in various cancer types (Review).

Oncol Rep

April 2021

Department of Animal Science and Biotechnology, Institute for Translational Research in Dentistry, Kyungpook National University, Bukgu, Daegu 41566, Republic of Korea.

Ginsenoside Rh2 (G‑Rh2) is a natural bioactive product derived from Meyer (). G‑Rh2 exhibits anticancer activity in various human cancer cell lines both and by modulating several signaling pathways, such as those of PDZ‑binding kinase/T‑LAK cell‑originated protein kinase, phosphatidylinositol 3‑kinase, protein kinase B, mammalian target of rapamycin, epidermal growth factor receptor, p53, and reactive oxygen species. Moreover, G‑Rh2 could effectively reverse drug resistance and enhance therapeutic effects in cancer therapy.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Possible segregation of plasma membrane (PM) phosphoinositide metabolism in membrane lipid domains is not fully understood. We exploited two differently lipidated peptide sequences, L10 and S15, to mark liquid-ordered, cholesterol-rich (L) and liquid-disordered, cholesterol-poor (L) domains of the PM, often called raft and nonraft domains, respectively. Imaging of the fluorescent labels verified that L10 segregated into cholesterol-rich L phases of cooled giant plasma-membrane vesicles (GPMVs), whereas S15 and the dye FAST DiI cosegregated into cholesterol-poor L phases.

View Article and Find Full Text PDF

The dynamic tuning of ion concentrations has attracted significant attention for creating versatile functionalities of materials, which are impossible to reach using classical control knobs. Despite these merits, the following fundamental questions remain: how do ions affect the electronic bandstructure, and how do ions simultaneously change the electrical and magnetic properties? Here, by annealing platinum-dotted La Sr MnO films in hydrogen and argon at a lower temperature of 200 °C for several minutes, a reversible change in resistivity is achieved by three orders of magnitude with tailored ferromagnetic magnetization. The transition occurs through the tuning of the double exchange interaction, ascribed to an electron-doping-induced and/or a lattice-expansion-induced modulation, along with an increase in the hydrogen concentration.

View Article and Find Full Text PDF

A combined transrectal ultrasound and photoacoustic (TRUS-PA) imaging probe was developed for the clear visualization of morphological changes and microvasculature distribution in the prostate, as this is required for accurate diagnosis and biopsy. The probe consisted of a miniaturized 128-element 7 MHz convex array transducer with 134.5° field-of-view (FOV), a bifurcated optical fiber bundle, and two optical lenses.

View Article and Find Full Text PDF

Social cooperation in rodents was recently validated in rats, and we recently successfully applied a modified automated analysis to mice. Here, we describe a detailed procedure for using this paradigm in mice that relies on reward-based mutual communication that is automatically detected by a software algorithm embedded in the custom-made equipment. We also describe exemplary results of analyses in mice as a guide to broader neuroscience research applications employing transgenic knockout mice modeling neuropsychiatric disorders and mice of various ages.

View Article and Find Full Text PDF

Astrocytes, characterized by a satellite-like morphology, are the most abundant type of glia in the central nervous system. Their main functions have been thought to be limited to providing homeostatic support for neurons, but recent studies have revealed that astrocytes actually actively interact with local neural circuits and play a crucial role in information processing and generating physiological and behavioral responses. Here, we review the emerging roles of astrocytes in many brain regions, particularly by focusing on intracellular changes in astrocytes and their interactions with neurons at the molecular and neural circuit levels.

View Article and Find Full Text PDF

Gephyrin is critical for the structure, function, and plasticity of inhibitory synapses. Gephyrin mutations have been linked to various neurological disorders; however, systematic analyses of the functional consequences of these mutations are lacking. Here, we performed molecular dynamics simulations of gephyrin to predict how six reported point mutations might change the structural stability and/or function of gephyrin.

View Article and Find Full Text PDF

Quantitative Assessment of Chest CT Patterns in COVID-19 and Bacterial Pneumonia Patients: a Deep Learning Perspective.

J Korean Med Sci

February 2021

Division of Pulmonology and Allergy, Department of Internal Medicine, Regional Center for Respiratory Diseases, Yeungnam University Medical Center, College of Medicine, Yeungnam University, Daegu, Korea.

Background: It is difficult to distinguish subtle differences shown in computed tomography (CT) images of coronavirus disease 2019 (COVID-19) and bacterial pneumonia patients, which often leads to an inaccurate diagnosis. It is desirable to design and evaluate interpretable feature extraction techniques to describe the patient's condition.

Methods: This is a retrospective cohort study of 170 confirmed patients with COVID-19 or bacterial pneumonia acquired at Yeungnam University Hospital in Daegu, Korea.

View Article and Find Full Text PDF

Synthetic aperture focusing (SAF) and coherence factor weighting (CFW) have been used to improve the lateral resolution of ultrasound images. Although the two methods are effective for array-based ultrasound imaging, many researchers have also employed the methods for single-element-based imaging including intravascular ultrasound (IVUS) imaging. For single-element-based imaging, CFW is generally calculated from the scanlines obtained by SAF and applied to the scanline obtained after coherent summation of the SAF delayed scanlines, which is called a SAF-CFW method.

View Article and Find Full Text PDF

A comprehensive understanding of the solid-electrolyte interphase (SEI) composition is crucial to developing high-energy batteries based on lithium metal anodes. A particularly contentious issue concerns the presence of LiH in the SEI. Here we report on the use of synchrotron-based X-ray diffraction and pair distribution function analysis to identify and differentiate two elusive components, LiH and LiF, in the SEI of lithium metal anodes.

View Article and Find Full Text PDF

The mammalian molecular clock is based on a transcription-translation feedback loop (TTFL) comprising the Period1, 2 (Per1, 2), Cryptochrome1, 2 (Cry1, 2), and Brain and Muscle ARNT-Like 1 (Bmal1) genes. The robustness of the TTFL is attributed to genetic redundancy among some essential clock genes, deterring genetic studies on molecular clocks using genome editing targeting single genes. To manipulate multiple clock genes in a streamlined and efficient manner, we developed a CRISPR-Cas9-based single adeno-associated viral (AAV) system targeting the circadian clock (CSAC) for essential clock genes including Pers, Crys, or Bmal1.

View Article and Find Full Text PDF

CsPbI perovskite quantum dots (CsPbI-PQDs) have recently come into focus as a light-harvesting material that can act as a platform through which to combine the material advantages of both perovskites and QDs. However, the low cubic-phase stability of CsPbI-PQDs in ambient conditions has been recognized as a factor that inhibits device stability. TiO nanoparticles are the most regularly used materials as an electron transport layer (ETL) in CsPbI-PQD photovoltaics; however, we found that TiO can facilitate the cubic-phase degradation of CsPbI-PQDs due to its vigorous photocatalytic activity.

View Article and Find Full Text PDF

How Stress Shapes Neuroimmune Function: Implications for the Neurobiology of Psychiatric Disorders.

Biol Psychiatry

July 2021

Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Electronic address:

Chronic stress causes physiological and hormonal adaptations that lead to neurobiological consequences and behavioral and cognitive impairments. In particular, chronic stress has been shown to drive reduced neurogenesis and altered synaptic plasticity in brain regions that regulate mood and motivation. The neurobiological and behavioral effects of stress resemble the pathophysiology and symptoms observed in psychiatric disorders, suggesting that there are similar underlying mechanisms.

View Article and Find Full Text PDF

Targeted Writing and Deleting of Magnetic Skyrmions in Two-Terminal Nanowire Devices.

Nano Lett

February 2021

Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Controllable writing and deleting of nanoscale magnetic skyrmions are key requirements for their use as information carriers for next-generation memory and computing technologies. While several schemes have been proposed, they require complex fabrication techniques or precisely tailored electrical inputs, which limits their long-term scalability. Here, we demonstrate an alternative approach for writing and deleting skyrmions using conventional electrical pulses within a simple, two-terminal wire geometry.

View Article and Find Full Text PDF