989 results match your criteria: "Daegu Gyeongbuk Institute of Science and Technology (DGIST); mech@dgist.ac.kr.[Affiliation]"
Sci Rep
January 2025
Department of Physics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
Nanoporous anodic alumina (nPAA) films formed on aluminum in lower aliphatic carboxylic acids exhibit blue self-coloring and characteristic properties such as photoluminescence (PL), electroluminescence, and electron spin resonance. The blue colors are seemingly originated from the adsorbed radicals incorporating into the oxide during the aluminum anodization. However, there is lack of reports revealing the detailed activation mechanism of the adatoms in the complexes.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
Triboelectric nanogenerators (TENGs) have gained significant attention for ability to convert mechanical energy into electrical energy. As the applications of TENG devices expand, their safety and reliability becomes priority, particularly where there is risk of fire or spontaneous combustion. Flame-retardant materials can be employed to address these safety concerns without compromising the performance and efficiency of TENGs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Electrical Engineering and Computer Science (EECS), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
A transistor design employing all vertically stacked components has attracted considerable attention due to the simplicity of the fabrication process and the high conductivity easily realized by achieving nanolevel short channel lengths with two-dimensional current paths. However, fundamental issues, specifically the blocking of the gate electrical field to the semiconductive channel layer and high leakage current at the "off" state, have impeded this configuration in becoming a major transistor design. To address these issues, it has been proposed to introduce a blocking layer (BL) with embedded hole structures and source electrode with embedded hole structures, enhancing gate field penetration and carrier modulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea.
Poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4-butylphenyl)))] (TFB) is a widely used hole transport material (HTM) in quantum dot light-emitting diodes (QLEDs). However, TFB-based solution-processed QLEDs face several challenges, including interlayer erosion, low hole mobility, shallow energy level of the highest occupied molecular orbital, and current leakage, which compromise the device efficiency and stability. To overcome these challenges, bromine and azide-based photothermally cross-linkable TFB derivatives, i.
View Article and Find Full Text PDFPhys Med
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea. Electronic address:
Purpose: Material decomposition induces substantial noise in basis images and their synthesized computed tomography (CT) images. A likelihood-based bilateral filter was previously developed as a neighborhood filter that effectively reduces noise. However, this method is sensitive to image contrast, and the noise texture needs improvement.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Toxic protein aggregates are associated with various neurodegenerative diseases, including Huntington's disease (HD). Since no current treatment delays the progression of HD, we develop a mechanistic approach to prevent mutant huntingtin (mHttex1) aggregation. Here, we engineer the ATP-independent cytosolic chaperone PEX19, which targets peroxisomal membrane proteins to peroxisomes, to remove mHttex1 aggregates.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea. Electronic address:
In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
System-level wearable electronics require to be flexible to ensure conformal contact with the skin, but they also need to integrate rigid and bulky functional components to achieve system-level functionality. As one of integration methods, folding integration offers simplified processing and enhanced functionality through rigid-soft region separation, but so far, it has mainly been applied to modality of electrical sensing and stimulation. This paper introduces a vialess heterogeneous skin patch with multi modalities that separates the soft region and strain-robust region through folded structure.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
In mission-critical environments such as industrial and military settings, the use of unmanned vehicles is on the rise. These scenarios typically involve a ground control system (GCS) and nodes such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). The GCS and nodes exchange different types of information, including control data that direct unmanned vehicle movements and sensor data that capture real-world environmental conditions.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
The calcium-dependent phospholipid scramblase TMEM16E mediates ion transport and lipid translocation across the plasma membrane. TMEM16E also contributes to protection of membrane structure by facilitating cellular repair signaling. Our research reveals that TMEM16E activation promotes macropinocytosis, essential for maintaining plasma membrane integrity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
ACS Nano
January 2025
Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea.
Nickel-rich NCM cathode materials promise lithium-ion batteries with a high energy density. However, an increased Ni fraction in the cathode leads to complex phase transformations with electrode-electrolyte side reactions, which cause rapid capacity fading. Here, we show that an initial formation cycle at 0.
View Article and Find Full Text PDFElife
January 2025
Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system for which the structural anatomical connectome was completely known recently.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
Odorant receptors (ORs), which constitute approximately 50% of all human G protein-coupled receptors, are increasingly recognized for their diverse roles beyond odor perception, including functions in various pathological conditions like brain diseases and cancers. However, the roles of ORs in glioblastoma (GBM), the most aggressive primary brain tumor with a median survival of only 15 months, remain largely unexplored. Here, we performed an integrated transcriptomic analysis combining The Cancer Genome Atlas RNA-seq and single-cell RNA sequencing data from GBM patients to uncover cell-type-specific roles of ORs within the tumor and its microenvironment.
View Article and Find Full Text PDFmedRxiv
December 2024
Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
As the number of Parkinson's patients is expected to increase with the growth of the aging population there is a growing need to identify new diagnostic markers that can be used cheaply and routinely to monitor the population, stratify patients towards treatment paths and provide new therapeutic leads. Genetic predisposition and familial forms account for only around 10% of PD cases [1] leaving a large fraction of the population with minimal effective markers for identifying high risk individuals. The establishment of population-wide omics and longitudinal health monitoring studies provides an opportunity to apply machine learning approaches on these unbiased cohorts to identify novel PD markers.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Achieving precise and cost-effective etching in the field of silicon three-dimensional (3D) structure fabrication remains a significant challenge. Here, we present the successful fabrication of microscale anisotropic Si structures with an etching anisotropy of 0.73 using Cu-metal-assisted chemical etching (Cu-MACE) and propose a mechanism to elucidate the chemical behavior of Cu within the MACE solution.
View Article and Find Full Text PDFSoft Robot
December 2024
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
High-performance eco-friendly soft actuators showing large displacement, fast response, and long-term operational capability require further development for next-generation bioinspired soft robots. Herein, we report an electro-ionic soft actuator based on carboxylated cellulose nanocrystals (CCNC) and carboxylated cellulose nanofibers (CCNF), graphene nanoplatelets (GN), and ionic liquid (IL). The actuator exhibited exceptional actuation performances, achieving large displacements ranging from 1.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
As the importance of hygiene and safety management in food manufacturing has been increasingly emphasized, research on non-destructive and non-contact inspection technologies has become more active. This study proposes a real-time and non-destructive food inspection system with sub-terahertz waves which penetrates non-conducting materials by using a frequency of 0.1 THz.
View Article and Find Full Text PDFInt J Med Robot
December 2024
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.
Background: Cable-driven continuum manipulators (CDCMs) enable scar-free procedures but face limitations in workspace and control accuracy due to hysteresis.
Methods: We introduce an extensible CDCM with a semi-active mechanism (SAM) and develop a real-time hysteresis compensation control algorithm using a temporal convolution network (TCN) based on data collected from fiducial markers and RGBD sensing.
Results: Performance validation shows the proposed controller significantly reduces hysteresis by up to 69.
Nanoscale
January 2025
Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
Energy harvesting, the process of capturing ambient energy from various sources and converting it into usable electrical power, has attracted a lot of attention due to its potential to provide long-term and self-sufficient energy solutions. This comprehensive review thoroughly explores the use of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) for energy harvesting by piezoelectric and triboelectric nanogenerators (PENGs and TENGs). It begins by classifying and outlining the structural diversity of MOFs and COFs, which is key to understanding their importance in energy applications.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea. Electronic address:
Clinical biomarkers are crucial for diagnosing and predicting outcomes in patients with traumatic brain injury (TBI). In this study, we performed an unbiased analysis of plasma proteins in acute TBI patients using bead-based multiplex assays and identified a strong positive correlation between LCN2 and IL-6 levels. Based on these findings, we hypothesized that LCN2 and IL-6 are closely related circulating biomarkers for TBI.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
Structures such as 3D buckling have been widely used to impart stretchability to devices. However, these structures have limitations when applied to piezoelectric devices due to the uneven distribution of internal strain during deformation. When strains with opposite directions simultaneously affect piezoelectric materials, the electric output can decrease due to cancellation.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.