19 results match your criteria: "D. Y. Patil Education Society (Institution Deemed to be University)[Affiliation]"

Background: Bone defects, especially critical-size bone defects, and their repair pose a treatment challenge. Osteoinductive scaffolds have gained importance given their potential in bone tissue engineering applications.

Methods: Polycaprolactone (PCL) scaffolds are used for their morphological, physical, cell-compatible and osteoinductive properties.

View Article and Find Full Text PDF

Bone tissue engineering aims to address bone-related problems that arise from trauma, infection, tumors, and surgery. Polymer and calcium silicate bioactive material (BM) based composites are commonly preferred as potential materials for bone treatment. However, the polymer has low bioactivity, thus, the current work aims to prepare a composite scaffold based on BM-sodium alginate (Alg) by varying the Alg percentage to optimize the porous nature of the composite.

View Article and Find Full Text PDF

Bioactive material‑sodium alginate-polyvinyl alcohol composite film scaffold for bone tissue engineering application.

Int J Biol Macromol

September 2024

Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India. Electronic address:

Road accidents and infection-causing diseases during bone surgery are serious problems in orthopedics, and thus, addressing these pressing challenges is crucial. In the present study, the 70S30C calcium silicate bioactive material (BM) is synthesized by a sustainable approach employing a precipitation method using recycled rice husk and eggshells as a precursor of silica and calcium. Further, 70S30C BM is composited with sodium alginate (SA) and polyvinyl alcohol (PVA), and the films were prepared by solvent casting method.

View Article and Find Full Text PDF

In the fields of tissue engineering and regenerative medicine, extracellular vesicles (EVs) have become viable therapeutic tools. EVs produced from stem cells promote tissue healing by regulating the immune system, enhancing cell proliferation and aiding remodeling processes. Recently, EV has gained significant attention from researchers due to its ability to treat various diseases.

View Article and Find Full Text PDF

Optimization of manganese-substituted iron oxide nanoferrites having the composition Mn Fe FeO ( = 0-1) has been achieved by the chemical co-precipitation method. The crystallite size and phase purity were analyzed from X-ray diffraction. With increases in Mn concentration, the crystallite size varies from 5.

View Article and Find Full Text PDF

Small diameter vascular graft is a clinical need in cardiovascular disease (CAD) and peripheral atherosclerotic diseases (PAD). Autologous graft has limitations in availability and harvesting surgery. To make luminal surface modification with heparin coating in xenogeneic small diameter vascular graft.

View Article and Find Full Text PDF

Widespread and irrational use of antibiotics results in the development of antibiotic-resistant bacteria. Thus, there is a need to develop novel antibacterial agents in order to replace conventional antibiotics and to increase the efficacy of already existing antibiotics by combining them with other materials. Herein, a single-step antibiotic-mediated synthesis of antibiotic-conjugated gold nanoparticles is reported.

View Article and Find Full Text PDF

This work addresses the fabrication of an efficient, novel, and economically viable immunosensing armamentarium that will detect the carcinoembryonic antigen (CEA) typically associated with solid tumors (sarcomas, carcinomas, and lymphomas) and is used as a clinical tumor marker for all these malignancies. We synthesized silver nanoparticles by single-step chemical reduction and coated with silica using a modified Stober method to fabricate silica-coated silver core-shell nanoparticles. The morphologies, structure, and size of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), UV-Visible spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infra-Red Spectroscopy (FTIR), and Dynamic Light Scattering (DLS), respectively.

View Article and Find Full Text PDF

2D-2D lattice engineering route is used to synthesize intimately coupled nanohybrids of layered double hydroxide (LDH) and potassium hexaniobate. The 2D-2D lattice engineering route is based on the electrostatically derived self-assembly of delaminated zinc-chromium-layered double hydroxide (ZC-LDH) nanosheets and potassium hexaniobate (HNb) nanosheets (ZCNb nanohybrids). The 2D-2D lattice-engineered ZCNb nanohybrids display expanded surface area, mesoporous anchored nanosheets network morphology, and intimate coupling between nanosheets.

View Article and Find Full Text PDF

Immunomodulatory extracellular vesicles: an alternative to cell therapy for COVID-19.

Expert Opin Biol Ther

December 2021

Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Fisciano, Italy.

: SARS-CoV-2 induces a cytokine storm and can cause inflammation, fibrosis and apoptosis in the lungs, leading to acute respiratory distress syndrome (ARDS). ARDS is the leading cause of mortality and morbidity the associated to COVID-19, and the cytokine storm is a prominent etiological factor. Mesenchymal stem cell-derived extracellular vesicles are an alternative therapy for the management of inflammatory and autoimmune conditions due to their immunosuppressive properties.

View Article and Find Full Text PDF

COVID-19 has affected millions of people and put an unparalleled burden on healthcare systems as well as economies throughout the world. Currently, there is no decisive therapy for COVID-19 or related complications. The only hope to mitigate this pandemic is through vaccines.

View Article and Find Full Text PDF

Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections.

Nano Today

February 2021

Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France.

COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The destructive nature of the disease makes it difficult for clinicians to manage the condition. Hence, there is an urgent need to find new alternatives for HCC, as the role of conventional cytotoxic drugs has reached a plateau to control HCC associated mortality.

View Article and Find Full Text PDF

Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance.

Drug Discov Today

March 2021

Nuffield Department of Women's & Reproductive Health, Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Department of Engineering Science, University of Oxford, South Parks Road, Oxford, OX1 3PJ, UK.

Cancer cell resistance to chemotherapeutics (chemoresistance) poses a significant clinical challenge that oncology research seeks to understand and overcome. Multiple anticancer drugs and targeting agents can be incorporated in nanomedicines, in addition to different treatment modalities, forming a single nanoplatform that can be used to address tumor chemoresistance. Nanomedicine-driven molecular assemblies using nucleic acids, small interfering (si)RNAs, miRNAs, and aptamers in combination with stimuli-responsive therapy improve the pharmacokinetic (PK) profile of the drugs and enhance their accumulation in tumors and, thus, therapeutic outcomes.

View Article and Find Full Text PDF

In the current scenario of the fight against cancer Integration of potential elements seems to be the best alternative since it overcomes the weaknesses of individuals and the combination of elements makes them formidable in the fight against the cancer war. Inspired by this objective and trusting our knowledge of paddy straw grown oyster mushroom, (Pf) mediated synthesis; a first-of-kind approach has been developed for the rapid synthesis of Au-Pt-Ag trimetallic nanoparticles (TMNPs). The developed method was successful, which was confirmed by Ultraviolet-Visible, X-ray diffraction, Transmission Electron Microscopy, Energy Dispersive Spectroscopy.

View Article and Find Full Text PDF

Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings.

Int J Biol Macromol

December 2020

CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland; Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416006, India. Electronic address:

Silk fibroin (SF) is derived from Bombyx mori silkworm cocoons and has been used in textiles and as a suture material for decades. More recently, SF has been used for various new biomedical applications, including as a wound dressing, owing to its excellent biological and mechanical properties. Specifically, the mechanical stiffness, versatility, biocompatibility, biodegradability, water vapour permeability and slight bactericidal properties make SF an excellent candidate biomaterial for wound dressing applications.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is the main cause for the COVID-19 infection-related morbidity and mortality. Recent clinical evidences suggest increased level of cytokines and chemokines targeting lung tissue as a prominent etiological factor. The immunomodulatory effect of mesenchymal stem cells (MSCs) as the alternative therapy for the treatment of inflammatory and autoimmune diseases is well known.

View Article and Find Full Text PDF

SARS-CoV-2 has devastated the world with its rapid spread and fatality. The researchers across the globe are struggling hard to search a drug to treat this infection. Understanding the time constraint, the best approach is to study clinically approved drugs for control of this deadly pandemic of COVID 19.

View Article and Find Full Text PDF

MRI Guided Magneto-chemotherapy with High-Magnetic-Moment Iron Oxide Nanoparticles for Cancer Theranostics.

ACS Appl Bio Mater

April 2020

Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.

Elevating and monitoring the temperature of tumors using magnetic nanoparticles (MNPs) still presents a challenge in magnetic hyperthermia therapy. The efficient heating of tumor volume can be achieved by preparing MNPs with high magnetization values. The next-generation approach to magnetic resonance image (MRI)-guided magneto-chemotherapy of cancer based on high-magnetic-moment iron oxide nanoparticles is proposed.

View Article and Find Full Text PDF