129 results match your criteria: "Czechia. Institute of Scientific Instruments of the Czech Academy of Sciences[Affiliation]"

Effects of motion correction, sampling rate and parametric modelling in dynamic contrast enhanced MRI of the temporomandibular joint in children affected with juvenile idiopathic arthritis.

Magn Reson Imaging

April 2021

Department of Physics and Technology, University of Bergen, Bergen, Norway; Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway. Electronic address:

The temporomandibular joint (TMJ) is typically involved in 45-87% of children with Juvenile Idiopathic Arthritis (JIA). Accurate diagnosis of JIA is difficult as various clinical tests, including MRI, disagree. The purpose of this study is to optimize the methodological aspects of Dynamic Contrast Enhanced (DCE) MRI of the TMJ in children.

View Article and Find Full Text PDF

Introduction: Pulsed field ablation (PFA) exploits the delivery of short high-voltage shocks to induce cells death via irreversible electroporation. The therapy offers a potential paradigm shift for catheter ablation of cardiac arrhythmia. We designed an AC-burst generator and therapeutic strategy, based on the existing knowledge between efficacy and safety among different pulses.

View Article and Find Full Text PDF

Diseases with the highest burden for society such as stroke, myocardial infarction, pulmonary embolism, and others are due to blood clots. Preclinical and clinical techniques to study blood clots are important tools for translational research of new diagnostic and therapeutic modalities that target blood clots. In this study, we employed a three-dimensional (3D) printed middle cerebral artery model to image clots under flow conditions using preclinical imaging techniques including fluorescent whole-body imaging, magnetic resonance imaging (MRI), and computed X-ray microtomography (microCT).

View Article and Find Full Text PDF

Polyvinylidene fluoride (PVDF) is a modern polymer material used in a wide variety of ways. Thanks to its excellent resistance to chemical or thermal degradation and low reactivity, it finds use in biology, chemistry, and electronics as well. By enriching the polymer with an easily accessible and cheap variant of graphite, it is possible to affect the ratio of crystalline phases.

View Article and Find Full Text PDF

This study introduces an original concept in the development of hydrogel materials for controlled release of charged organic compounds based on semi-interpenetrating polymer networks composed by an inert gel-forming polymer component and interpenetrating linear polyelectrolyte with specific binding affinity towards the carried active compound. As it is experimentally illustrated on the prototype hydrogels prepared from agarose interpenetrated by poly(styrene sulfonate) (PSS) and alginate (ALG), respectively, the main benefit brought by this concept is represented by the ability to tune the mechanical and transport performance of the material independently via manipulating the relative content of the two structural components. A unique analytical methodology is proposed to provide complex insight into composition-structure-performance relationships in the hydrogel material combining methods of analysis on the macroscopic scale, but also in the specific microcosms of the gel network.

View Article and Find Full Text PDF

Suboptimal response to STN-DBS in Parkinson's disease can be identified via reaction times in a motor cognitive paradigm.

J Neural Transm (Vienna)

December 2020

Central European Institute of Technology (CEITEC), Brain and Mind Research Program, Masaryk University, Brno, Czech Republic.

Although deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson's disease (PD) is generally a successful therapy, adverse events and insufficient clinical effect can complicate the treatment in some patients. We studied clinical parameters and cortical oscillations related to STN-DBS to identify patients with suboptimal responses. High-density EEG was recorded during a visual oddball three-stimuli paradigm in DBS "off" and "on" conditions in 32 PD patients with STN-DBS.

View Article and Find Full Text PDF

We propose a novel methodology to estimate parameters characterizing a weakly nonlinear Duffing oscillator represented by an optically levitating nanoparticle. The method is based on averaging recorded trajectories with defined initial positions in the phase space of nanoparticle position and momentum and allows us to study the transient dynamics of the nonlinear system. This technique provides us with the parameters of a levitated nanoparticle such as eigenfrequency, damping, coefficient of nonlinearity and effective temperature directly from the recorded transient particle motion without any need for external driving or modification of an experimental system.

View Article and Find Full Text PDF

Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level.

View Article and Find Full Text PDF

Field Emission Properties of Polymer Graphite Tips Prepared by Membrane Electrochemical Etching.

Nanomaterials (Basel)

July 2020

Surface Physics and Materials Technology lab, Department of Physics, Mutah University, Al-Karak 61710, Jordan.

This paper investigates field emission behavior from the surface of a tip that was prepared from polymer graphite nanocomposites subjected to electrochemical etching. The essence of the tip preparation is to create a membrane of etchant over an electrode metal ring. The graphite rod acts here as an anode and immerses into the membrane filled with alkali etchant.

View Article and Find Full Text PDF

Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling.

View Article and Find Full Text PDF

sp. H1 is a promising, moderately thermophilic, novel Gram-positive bacterium capable of the biosynthesis of polyhydroxyalkanoates (PHA) with tunable monomer composition. In particular, the strain is able to synthesize copolymers of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate (3HV) with remarkably high 4HB and 3HV fractions.

View Article and Find Full Text PDF

Extremophilic microorganisms are considered being very promising candidates for biotechnological production of various products including polyhydroxyalkanoates (PHA). The aim of this work was to evaluate the PHA production potential of a novel PHA-producing thermophilic Gram-positive isolate sp. H1.

View Article and Find Full Text PDF

The paper discusses the real-time monitoring of the changing sample morphology during the entire lyophilization (freeze-drying) and vacuum-drying processes of model biopharmaceutical solutions by using an environmental scanning electron microscope (ESEM); the device's micromanipulators were used to study the interior of the samples in-situ without exposing the samples to atmospheric water vapor. The individual collapse temperatures (T) of the formulations, pure bovine serum albumin (BSA) and BSA/sucrose mixtures, ranged from -5 to -29 °C. We evaluated the impact of the freezing method (spontaneous freezing, controlled ice nucleation, and spray freezing) on the morphologies of the lyophiles at the constant drying temperature of -20 °C.

View Article and Find Full Text PDF

The objective of this work is to study the delamination of bismuth ferrite prepared by atomic layer deposition on highly oriented pyrolytic graphite (HOPG) substrate. The samples' structures and compositions are provided by XPS, secondary ion mass spectrometry (SIMS) and Raman spectroscopy. The resulting films demonstrate buckling and delamination from the substrates.

View Article and Find Full Text PDF

Protective hard PVD coatings are used to improve the endurance of the tools exposed to repeated impact load, e.g., fine blanking punches.

View Article and Find Full Text PDF

High velocity oxygen-fuel (HVOF) prepared CrC-based hardmetal coatings are generally known for their superior wear, corrosion, and oxidation resistance. These properties make this coating attractive for application in industry. However, under some loading conditions and in aggressive environments, the most commonly used NiCr matrix is not sufficient.

View Article and Find Full Text PDF

Gestational methylazoxymethanol acetate (MAM) treatment produces offspring with adult phenotype relevant to schizophrenia, including positive- and negative-like symptoms, cognitive deficits, dopaminergic dysfunction, structural and functional abnormalities. Here we show that adult rats prenatally treated with MAM at gestational day 17 display significant increase in dopamine D3 receptor (D3) mRNA expression in prefrontal cortex (PFC), hippocampus and nucleus accumbens, accompanied by increased expression of dopamine D2 receptor (D2) mRNA exclusively in the PFC. Furthermore, a significant change in the blood perfusion at the level of the circle of Willis and hippocampus, paralleled by the enlargement of lateral ventricles, was also detected by magnetic resonance imaging (MRI) techniques.

View Article and Find Full Text PDF

Simple compensation method for improved half-pulse excitation profile with rephasing gradient.

Magn Reson Med

October 2020

High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Purpose: To improve the slice profile quality obtained by RF half-pulse excitation for 2D-UTE applications.

Methods: The overall first-order and zero-order phase errors along the slice-selection direction were obtained with the help of an optimization task to minimize the out-of-slice signal contamination from the calibration 1-dimenisonal (1D) profile data. The time-phase-error evolution was approximated from the k-space readout data, which were acquired primarily for correction of the readout trajectories during data regridding to the rectilinear grids.

View Article and Find Full Text PDF

Animals are faced with a range of ecological constraints that shape their behavioural decisions. Habitat features that affect resource abundance will also have an impact, especially as regards spatial distribution, which will in turn affect associations between the animals. Here we utilised a network approach, using spatial and genetic data, to describe patterns in use of space (foraging sites) by free-ranging Egyptian fruit bats (Rousettus aegyptiacus) at the Dakhla Oasis in Egypt.

View Article and Find Full Text PDF

The thickness of electron transparent samples can be measured in an electron microscope using several imaging techniques like electron energy loss spectroscopy (EELS) or quantitative scanning transmission electron microscopy (STEM). We extrapolate this method for using a back-scattered electron (BSE) detector in the scanning electron microscope (SEM). This brings the opportunity to measure the thickness not just of the electron transparent samples on TEM mesh grids, but, in addition, also the thickness of thin films on substrates.

View Article and Find Full Text PDF

This paper presents polymer graphite (PG) as a novel material for the scanning tunneling microscopy (STM) probe. Conductive PG is a relatively modern nanocomposite material used for micro-pencil refills containing a polymer-based binding agent and graphite flakes. Its high conductivity and immunity against surface contamination, with a low price, make it seem like a highly suitable material for electrode manufacturing in general.

View Article and Find Full Text PDF

A room-temperature ion trapping apparatus with hydrogen partial pressure below 10 mbar.

Rev Sci Instrum

August 2019

Department of Optics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic.

The lifetime of trapped ion ensembles corresponds to a crucial parameter determining the potential scalability of their prospective applications and is often limited by the achievable vacuum level in the apparatus. We report on the realization of a room-temperature Ca ion trapping vacuum apparatus with unprecedentedly low reaction rates of ions with a dominant vacuum contaminant: hydrogen. We present our trap assembly procedures and hydrogen pressure characterization by analysis of the CaH molecule formation rate.

View Article and Find Full Text PDF

Background: Olanzapine is a frequently used atypical antipsychotic drug known to exert structural brain alterations in animals. This study investigated whether chronic olanzapine exposure alters regional blood brain perfusion assessed by Arterial Spin Labelling (ASL) magnetic resonance imaging (MRI) in a validated model of olanzapine-induced metabolic disturbances. An effect of acute olanzapine exposure on brain perfusion was also assessed for comparison.

View Article and Find Full Text PDF

Background: Cardiac resynchronization therapy (CRT) is an established treatment in patients with heart failure and conduction abnormalities. However, a significant number of patients do not respond to CRT. Currently employed criteria for selection of patients for this therapy (QRS duration and morphology) have several shortcomings.

View Article and Find Full Text PDF

Diffusion Kurtosis Imaging Detects Microstructural Changes in a Methamphetamine-Induced Mouse Model of Parkinson's Disease.

Neurotox Res

November 2019

Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.

Methamphetamine (METH) abuse is known to increase the risk of Parkinson's disease (PD) due to its dopaminergic neurotoxicity. This is the rationale for the METH model of PD developed by toxic METH dosing (10 mg/kg four times every 2 h) which features robust neurodegeneration and typical motor impairment in mice. In this study, we used diffusion kurtosis imaging to reveal microstructural brain changes caused by METH-induced neurodegeneration.

View Article and Find Full Text PDF