207 results match your criteria: "Cranfield Water Science Institute[Affiliation]"

Nutrient Removal and Recovery from Urine Using Bio-Mineral Formation Processes.

ACS Sustain Resour Manag

September 2024

Cranfield Water Science Institute, Cranfield University, College Road, Cranfield MK43 0AL, UK.

Harvesting nutrients from waste presents a promising initiative to advance and deliver the circular economy in the water sector while mitigating local shortages of mineral fertilizers worldwide. Urine, a small fraction of municipal wastewater, holds substantial amounts of nitrogen, orthophosphate (PO-P), and chemical oxygen demand (COD). Separating urine aids targeted nutrient recovery, emissions reduction, and releasing capacity in wastewater treatment plants and taps into overlooked vital nutrients like magnesium (Mg) and potassium (K), essential for plant growth.

View Article and Find Full Text PDF

The deposition of fats, oil, and grease (FOG) in sewers reduces conveyance capacity and leads to sanitary sewer overflows. The major contributing factor lies in the indiscriminate disposal of used cooking oil (UCO) via kitchen sinks. While prior investigations have mostly highlighted the significance of Ca from concrete biocorrosion, the influence of common metal ions (e.

View Article and Find Full Text PDF

Hydrolytic enzyme activity in high-rate anaerobic reactors treating municipal wastewater in temperate climates.

Bioresour Technol

August 2024

Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom. Electronic address:

Particulate matter hydrolysis is the bottleneck in anaerobic treatment of municipal wastewater in temperate climates. Low temperatures theoretically slow enzyme-substrate interactions, hindering utilization kinetics, but this remains poorly understood. β-glucosidase, protease, and lipase activities were evaluated in two pilot-scale upflow anaerobic sludge blanket (UASB) reactors, inoculated with different sludges and later converted to anaerobic membrane bioreactors (AnMBRs).

View Article and Find Full Text PDF

UV/TiO photocatalysis as post-treatment of anaerobic membrane bioreactor effluent for reuse.

J Environ Manage

April 2024

Cranfield Water Science Institute, Cranfield University, Cranfield, MK430AL, United Kingdom. Electronic address:

Advanced oxidation processes have been widely applied as a post-treatment solution to remove residual organic compounds in water reuse schemes. However, UV/TiO photocatalysis, which provides a sustainable option with no continuous chemical addition, has very rarely been studied to treat anaerobically treated effluents. In the current study, the removal of organics and nutrients from an anaerobic membrane bioreactor (AnMBR) effluent is evaluated during adsorption and photocatalysis processes under various conditions of TiO dose and UV intensity and compared to the effluent from an aerobic membrane bioreactor (AeMBR).

View Article and Find Full Text PDF

Prisons are high-risk settings for infectious disease transmission, due to their enclosed and semi-enclosed environments. The proximity between prisoners and staff, and the diversity of prisons reduces the effectiveness of non-pharmaceutical interventions, such as social distancing. Therefore, alternative health monitoring methods, such as wastewater-based epidemiology (WBE), are needed to track pathogens, including SARS-CoV-2.

View Article and Find Full Text PDF

The water industry worldwide experiences numerous sewer blockages each year, partially attributed to the accumulation of fat, oil and grease (FOG). Managing this issue involves various strategies, including the requirement for installation of grease interceptors (GIs) installation. However, the claimed efficacy of commercial GIs of eliminating 99 % of FOG has been questioned for many years because FOG deposit formation occurs despite food service establishments (FSEs) using GIs, therefore detailed understanding of FOG wastewater compositions and its removal by GIs is required.

View Article and Find Full Text PDF

Vacuum thermal stripping permits the recovery of ammonia from wastewater in a concentrated form, which is key to its exploitation in the circular economy, but the latent heat demand for thermal separation remains a critical barrier to exploitation. In this study, we investigate the vapor-liquid equilibrium (VLE) for ammonia-water as a mechanism to enhance recovered ammonia quality and minimise the thermal energy required for ammonia separation. Below the dew point (65 °C at 0.

View Article and Find Full Text PDF

The removal of EDCs in activated sludge processes can be enhanced by increasing solid and hydraulic retention times (SRT and HRT); it has been suggested that the improvement in removal is due to changes in microbial community structure (MCS). Though the influence of SRT and HRT on chemical removal and MCS has been studied in isolation, their synergistic impact on MCS and the removal of estrogens and nonylphenols in activated sludge remains unknown. Hence, we investigated how both parameters influence MCS in activated sludge processes and their ulterior effect on EDC removal.

View Article and Find Full Text PDF

Water chemistry poses health risks as reliance on groundwater increases: A systematic review of hydrogeochemistry research from Ethiopia and Kenya.

Sci Total Environ

December 2023

School of Earth Sciences, Addis Ababa University, Arat Killo Campus, NBH1 King George VI St, Addis Ababa, Ethiopia; Centre for Water Resources Research, University of KwaZulu Natal, Pietermaritzburg Private Bag X01, Scottsville, South Africa.

Reliance on groundwater is increasing in Sub-Saharan Africa as development programmes work towards improving water access and strengthening resilience to climate change. In lower-income areas, groundwater supplies are typically installed without water quality treatment infrastructure or services. This practice is underpinned by an assumption that untreated groundwater is typically suitable for drinking due to the relative microbiological safety of groundwater compared to surface water; however, chemistry risks are largely disregarded.

View Article and Find Full Text PDF

The established classical method of treating oil refinery effluent is flotation followed by biological treatment. Membrane bioreactors (MBRs) offer more advanced treatment, producing a clarified and potentially reusable treated effluent, but demand robust pretreatment to remove oil and grease (O&G) down to consistent, reliably low levels. An analysis of a full-scale conventional oil refinery ETP (effluent treatment plant) based on flotation alone, coupled with projected performance, energy consumption and costs associated with a downstream MBR, have demonstrated satisfactory performance of flotation-based pretreatment.

View Article and Find Full Text PDF

Disinfection byproduct (DBP) formation, prediction, and minimization are critical challenges facing the drinking water treatment industry worldwide where chemical disinfection is required to inactivate pathogenic microorganisms. Fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC) is used to characterize and quantify fluorescent dissolved organic matter (FDOM) components in aquatic systems and may offer considerable promise as a low-cost optical surrogate for DBP formation in treated drinking waters. However, the global utility of this approach for quantification and prediction of specific DBP classes or species has not been widely explored to date.

View Article and Find Full Text PDF

Purpose Of Review: Wastewater-based surveillance (WBS) (epidemiology) using near-source sampling (NSS) in large buildings, hospitals and care homes is reviewed covering three main areas: state-of-the-art WBS, benefits/opportunities NSS has for hospital infection control systems and new insights from hospital wastewater surveillance and policy implications.

Recent Findings: Wastewater provides aggregate, anonymous sources of data where the spatial resolution can be linked to populations being served. In hospitals, clear links established between wastewater RNA-fragments signal to nosocomial COVID-19 cases/outbreaks.

View Article and Find Full Text PDF

Multifunctional Heterogeneous Ion-Exchange Membranes for Ion and Microbe Removal in Low-Salinity Water.

Polymers (Basel)

February 2023

Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg 1709, South Africa.

Here, multifunctional heterogeneous ion-exchange metal nanocomposite membranes were prepared for surface water desalination and bacterial inactivation under low-pressure (0.05 MPa) filtration conditions. Ultrafiltration (UF) heterogeneous ion exchange membranes (IEMs) were modified with different concentrations of AgNO and CuSO solutions using the intermatrix synthesis (IMS) technique to produce metal nanocomposite membranes.

View Article and Find Full Text PDF

Molecular insights informing factors affecting low temperature anaerobic applications: Diversity, collated core microbiomes and complexity stability relationships in LCFA-fed systems.

Sci Total Environ

May 2023

Cranfield Water Science Institute, Cranfield University, College Way, Bedfordshire MK43 0AL, UK; Institute for Nanotechnology and Water Sustainability, University of South Africa, UNISA Science Campus, 1710 Roodepoort, Johannesburg, South Africa. Electronic address:

Fats, oil and grease, and their hydrolyzed counterparts-long chain fatty acids (LCFA) make up a large fraction of numerous wastewaters and are challenging to degrade anaerobically, more so, in low temperature anaerobic digestion (LtAD) systems. Herein, we perform a comparative analysis of publicly available Illumina 16S rRNA datasets generated from LCFA-degrading anaerobic microbiomes at low temperatures (10 and 20 °C) to comprehend the factors affecting microbial community dynamics. The various factors considered were the inoculum, substrate and operational characteristics, the reactor operation mode and reactor configuration, and the type of nucleic acid sequenced.

View Article and Find Full Text PDF

Prokaryotic diversity in lakes has been studied for many years mainly focusing on community structure and how the bacterial assemblages are driven by physicochemical conditions such as temperature, oxygen, and nutrients. However, little is known about how the composition and function of the prokaryotic community changes upon lake stratification. To elucidate this, we studied Lake Cote in Costa Rica determining prokaryotic diversity and community structure in conjunction with physicochemistry along vertical gradients during stratification and mixing periods.

View Article and Find Full Text PDF

This study aimed to assess the spatial distribution, contamination levels, pollution degree and ecological risks of eight heavy metals (Cd, Cr, Co, Cu, Mn, Ni, Pb and Zn) in topsoils of UMaT, Brahabobom, A'koon, Boboobo and Bogoso Junction (areas in Tarkwa, a mining town in Ghana). Eighty soil samples were collected, and metal concentrations were determined using atomic absorption spectroscopy (AAS). The results revealed that Cu, Ni, Pb and Zn concentrations exceeded the WHO/FAO (2001) standard in some areas.

View Article and Find Full Text PDF

Background: Appropriate behaviour change with regard to safe water contact practices will facilitate the elimination of schistosomiasis as a public health concern. Various approaches to effecting this change have been trialled in the field but with limited sustainable outcomes. Our case study assessed the effectiveness of a novel theatre-based behaviour change technique (BCT), in combination with cohort awareness raising and capacity training intervention workshops.

View Article and Find Full Text PDF

Resin-Loaded Heterogeneous Polyether Sulfone Ion Exchange Membranes for Saline Groundwater Treatment.

Membranes (Basel)

July 2022

Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.

Arid areas often contain brackish groundwater that has a salinity exceeding 500 mg/L. This poses several challenges to the users of the water such as a salty taste and damage to household appliances. Desalination can be one of the key solutions to significantly lower the salinity and solute content of the water.

View Article and Find Full Text PDF

Coliphages are virus that infect coliform bacteria and are used in aquatic systems for risk assessment for human enteric viruses. This mini-review appraises the types and sources of coliphage and their fate and behavior in source waters and engineered drinking water treatment systems. Somatic (cell wall infection) and F (male specific) coliphages are abundant in drinking water sources and are used as indicators of fecal contamination.

View Article and Find Full Text PDF

Sand dams are impermeable water harvesting structures built to collect and store water within the volume of sediments transported by ephemeral rivers. The artificial sandy aquifer created by the sand dam reduces evaporation losses relative to surface water storage in traditional dams. Recent years have seen a renaissance of studies on sand dams as an effective water scarcity adaptation strategy for drylands.

View Article and Find Full Text PDF

Spironolactone (SPL), a potent anti-aldosterone steroidal drug used to treat several diseases in paediatric patients (e.g., hypertension, primary aldosteronism, Bartter's syndrome, and congestive heart failure), is not available in child-friendly dosage forms, and spironolactone liquids have been reported to be unpalatable.

View Article and Find Full Text PDF

Low-pressure membrane technology (ultrafiltration and microfiltration) has been applied to two key effluents generated by the petroleum industry: produced water (PW) from oil exploration, a significant proportion being generated offshore, and onshore refinery/petrochemical effluent. PW is treated physicochemically to remove the oil prior to discharge, whereas the onshore effluents are often treated biologically to remove both the suspended and dissolved organic fractions. This review examines the efficacy and extent of implementation of membrane technology for these two distinct applications, focusing on data and information pertaining to the treatment of real effluents at large/full scale.

View Article and Find Full Text PDF

Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors.

Nat Commun

April 2022

College of Chemical and Biological Engineering & Hangzhou Innovation Center, Zhejiang University, Hangzhou, 311200, China.

In type II CRISPR systems, the guide RNA (gRNA) comprises a CRISPR RNA (crRNA) and a hybridized trans-acting CRISPR RNA (tracrRNA), both being essential in guided DNA targeting functions. Although tracrRNAs are diverse in sequence and structure across type II CRISPR systems, the programmability of crRNA-tracrRNA hybridization for Cas9 is not fully understood. Here, we reveal the programmability of crRNA-tracrRNA hybridization for Streptococcus pyogenes Cas9, and in doing so, redefine the capabilities of Cas9 proteins and the sources of crRNAs, providing new biosensing applications for type II CRISPR systems.

View Article and Find Full Text PDF

Ceramic vs polymeric membrane implementation for potable water treatment.

Water Res

May 2022

Cranfield Water Science Institute, Cranfield University, Beds, UK. Electronic address:

The continued technological developments and decreased purchase costs of ceramic membranes have seen increased recent interest in the technology as an alternative to the more widely used polymeric membranes. This paper assesses the relative technical, practical and economic merits of the two membrane materials in the context of potable water production from surface water sources. The work focuses on phenomena of direct technoeconomic significance, namely cleaning efficacy (manifested as permeability recovery), membrane integrity and incurred labour effort.

View Article and Find Full Text PDF

The status of potable water reuse implementation.

Water Res

May 2022

Cranfield Water Science Institute, Cranfield, Beds, United Kingdom. Electronic address:

A review of the current status of direct and indirect potable water reuse (DPR/IPR) implementation has been conducted, focusing on the regulatory and practical aspects and with reference to the most recent published literature. The review encompasses (a) the principal contaminant types, their required removal and the methods by which their concentration is monitored, (b) regulatory approaches and stipulations in assessing/ratifying treatment schemes and maintaining treated water quality, and (c) existing full-scale installations. Analytical methods discussed include established in-line monitoring tools, such as turbidity measurement, to more recent polymerase chain reaction (PCR)-based assay methods for microbial detection.

View Article and Find Full Text PDF