24 results match your criteria: "Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants[Affiliation]"

Article Synopsis
  • Researchers identified specific enzymes known as cytochrome P450s that are responsible for oxidative modifications of these compounds, revealing their roles in the biosynthetic pathway of triterpenoids.
  • The study concluded that the initial oxidation step in this pathway likely involves C-28 modification, with subsequent branching into different hydroxylation processes to create various beneficial compounds.
View Article and Find Full Text PDF

Kalmegh (Andrographis paniculata) spatiotemporally produces medicinally-important ent-labdane-related diterpenoids (ent-LRDs); andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), neoandrographolide (NAD). ApCPS1 and ApCPS2, the ent-copalyl pyrophosphate (ent-CPP)-producing class II diterpene synthases (diTPSs) were identified, but their contributions to ent-CPP precursor supply for ent-LRD biosynthesis were not well understood. Here, we characterized ApCPS4, an additional ent-CPP-forming diTPS.

View Article and Find Full Text PDF
Article Synopsis
  • Germacrene D, a compound used in fragrances, has a sustainable production method that was previously lacking, but this study successfully engineered yeast to biosynthesize it in pure forms.
  • The researchers created a specialized yeast strain that increased the production of farnesyl pyrophosphate (FPP), leading to significant improvements in germacrene D yields, ranging from 67 to 120 times more than the parent strain.
  • In experiments, the engineered yeast produced unprecedented amounts of germacrene D: up to 290.28 µg/ml for the (+) enantiomer and 2519.46 µg/ml for the (-) enantiomer, showcasing the effectiveness of their metabolic engineering approach.
View Article and Find Full Text PDF

Boswellia tree bark exudes oleo-gum resin in response to wounding, which is rich in terpene volatiles. But, the molecular and biochemical basis of wound-induced formation of resin volatiles remains poorly understood. Here, we combined RNA-sequencing (RNA-seq) and metabolite analysis to unravel the terpene synthase (TPS) family contributing to wound-induced biosynthesis of resin volatiles in B.

View Article and Find Full Text PDF

Bacteria that enhance plant growth and development and are found in the vicinity of roots are referred to as plant growth-promoting rhizobacteria. Some beneficial bacteria help plant tolerance to many hazardous chemical elements. In this context, Cupriavidus basilensis , Novosphingobium humi , Bacillus zanthoxyli , Bacillus sp.

View Article and Find Full Text PDF

Bacteria of the genus Azospirillum include several plant associated bacteria which often promote the growth of their host plants. Although the host range of Azospirillum brasilense Sp7 is much wider than its close relative Azospirillum lipoferum 4B, it lacks the ability to efficiently utilize D-glucose for its growth. By comparing the genomes of both the species, the genes of A.

View Article and Find Full Text PDF

Azospirillum brasilense is a plant growth-promoting rhizobacterium that is not known to utilize ethanol as a sole source of carbon for growth. This study shows that A. brasilense can cometabolize ethanol in medium containing fructose or glycerol as a carbon source and contribute to its growth.

View Article and Find Full Text PDF

Glycosyltransferases constitute a large family of enzymes across all domains of life, but knowledge of their biochemical function remains largely incomplete, particularly in the context of plant specialized metabolism. The labdane diterpenes represent a large class of phytochemicals with many pharmacological benefits, such as anti-inflammatory, hepatoprotective, and anticarcinogenic. The medicinal plant kalmegh (Andrographis paniculata) produces bioactive labdane diterpenes; notably, the C19-hydroxyl diterpene (andrograpanin) is predominantly found as C19-O-glucoside (neoandrographolide), whereas diterpenes having additional hydroxylation(s) at C3 (14-deoxy-11,12-didehydroandrographolide) or C3 and C14 (andrographolide) are primarily detected as aglycones, signifying scaffold-selective C19-O-glucosylation of diterpenes in planta.

View Article and Find Full Text PDF

Triterpenes (30-carbon isoprene compounds) represent a large and highly diverse class of natural products that play various physiological functions in plants. The triterpene biosynthetic enzymes, particularly those catalyzing the late-stage regio-selective modifications are not well characterized. The bark of select Boswellia trees, e.

View Article and Find Full Text PDF

Virus-induced gene silencing (VIGS) is a powerful reverse genetic tool for rapid functional analysis of plant genes. Over the last decade, VIGS has been widely used for conducting rapid gene knockdown experiment in plants and played a crucial role in advancing applied and basic research in plant science. VIGS was studied extensively in model plants Arabidopsis and tobacco.

View Article and Find Full Text PDF

Arjuna (Terminalia arjuna) tree has been popular in Indian traditional medicine to treat cardiovascular ailments. The tree accumulates bioactive triterpene glycosides (saponins) and aglycones (sapogenins), in a tissue-preferential manner. Oleanane triterpenes/saponins (derived from β-amyrin) with potential cardioprotective function predominantly accumulate in the bark.

View Article and Find Full Text PDF

Pentacyclic triterpenes (PCTs) represent a major class of bioactive metabolites in banaba (Lagerstroemia speciosa) leaves; however, biosynthetic enzymes and their involvement in the temporal accumulation of PCTs remain to be studied. We use an integrated approach involving transcriptomics, metabolomics and gene function analysis to identify oxidosqualene cyclases (OSCs) and cytochrome P450 monooxygenases (P450s) that catalyzed sequential cyclization and oxidative reactions towards PCT scaffold diversification. Four monofunctional OSCs (LsOSC1,3-5) converted the triterpene precursor 2,3-oxidosqualene to either lupeol, β-amyrin or cycloartenol, and a multifunctional LsOSC2 formed α-amyrin as a major product along with β-amyrin.

View Article and Find Full Text PDF

Cytochrome P450 monooxygenases (P450s) represent the largest enzyme family of the plant metabolism. Plants typically devote about 1% of the protein-coding genes for the P450s to execute primary metabolism and also to perform species-specific specialized functions including metabolism of the triterpenes, isoprene-derived 30-carbon compounds. Triterpenes constitute a large and structurally diverse class of natural products with various industrial and pharmaceutical applications.

View Article and Find Full Text PDF

The medicinal plant sweet basil (Ocimum basilicum) accumulates bioactive ursane- and oleanane-type pentacyclic triterpenes (PCTs), ursolic acid and oleanolic acid, respectively, in a spatio-temporal manner; however, the biosynthetic enzymes and their contributions towards PCT biosynthesis remain to be elucidated. Two CYP716A subfamily cytochrome P450 monooxygenases (CYP716A252 and CYP716A253) are identified from a methyl jasmonate-responsive expression sequence tag collection and functionally characterized, employing yeast (Saccharomyces cerevisiae) expression platform and adapting virus-induced gene silencing (VIGS) in sweet basil. CYP716A252 and CYP716A253 catalyzed sequential three-step oxidation at the C-28 position of α-amyrin and β-amyrin to produce ursolic acid and oleanolic acid, respectively.

View Article and Find Full Text PDF

Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C.

View Article and Find Full Text PDF

Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection.

View Article and Find Full Text PDF

Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.).

Front Genet

February 2016

EU Marie Curie Chair, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora Évora, Portugal.

Stress-adaptive cell plasticity in target tissues and cells for plant biomass growth is important for yield stability. In vitro systems with reproducible cell plasticity can help to identify relevant metabolic and molecular events during early cell reprogramming. In carrot, regulation of the central root meristem is a critical target for yield-determining secondary growth.

View Article and Find Full Text PDF

Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities.

View Article and Find Full Text PDF

Sterol glycosyltransferases (SGTs) belong to family 1 of glycosyltransferases (GTs) and are enzymes responsible for synthesis of sterol-glucosides (SGs) in many organisms. WsSGTL1 is a SGT of Withania somnifera that has been found associated with plasma membranes. However its biological function in W.

View Article and Find Full Text PDF

Background: Kalmegh (Andrographis paniculata) has been widely exploited in traditional medicine for the treatment of infectious diseases and health disorders. Ent-labdane-related diterpene (ent-LRD) specialized (i.e.

View Article and Find Full Text PDF

Sweet basil (Ocimum basilicum), a member of the Lamiaceae, is used as an ornamental as well as a culinary herb. It is a rich source of the phenolic compound methyl chavicol and is used as a traditional medicinal plant in India, where the crop is grown on ~2,500 ha annually (4). The species is native to India, where it has been cultivated for >5,000 years.

View Article and Find Full Text PDF

Objective: Bone protective effects of withaferin A (WFA) from leaves of Withania somnifera (L.) were evaluated in preventive model of Balb/c mice with 17 β-estradiol (E2) and alendronate (ALD).

Methods: Adult female Balb/c mice, 7 to 9 wk, were bilaterally ovariectomized (OVx) to mimic the state of E2 deficiency.

View Article and Find Full Text PDF

Ten 5-methyltryprophan (5-MT)-resistant multiple shoot culture lines in three genotypes of Catharanthus roseus were selected in vitro. The variant shoot lines displayed a differential threshold tolerance limit against the analogue stress, ranged from 20 to 70 mg/l 5-MT in the medium. The lines tolerant to 40 mg/l 5-MT stress were most stable and fast proliferating.

View Article and Find Full Text PDF