9 results match your criteria: "Council of Scientific and Industrial Research - Central Leather Research Institute (CSIR-CLRI)[Affiliation]"

Collagen fibrils serve as the building blocks of the extracellular matrix, providing a resilient and structural framework for tissues. However, the bundling of collagen fibrils is of paramount importance in maintaining the structural integrity and functionality of various tissues in the human body. In this scenario, there is limited exploration of molecules that promote the bundling of collagen fibrils.

View Article and Find Full Text PDF

Fibroblast Growth Receptor Factor (FGFR) are a family of proteins which are, in addition to their biological role, are involved in various pathological functions, such as cancer cellular proliferation, and metastasis. Deregulation of FGFRs at various points could result in malignancy. A conformational transition of the DFG (Asp-Phe-Gly) motif can switch the enzyme from a catalytically active (DFG-in) to an inactive (DFG-out) state.

View Article and Find Full Text PDF

The distinct disease progression patterns of severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) indicate diverse host immune responses. SARS-CoV-2 severely impairs type I interferon (IFN) cell signaling, resulting in uncontrolled late-phase lung damage in patients. For better pharmacological properties, cytokine modifications may sometimes result in a loss of biological activity against the virus.

View Article and Find Full Text PDF

A supramolecular hydrogel with 3D self-shrinking, without any assistance, and a shape memory performance at room temperature is discovered from an unnatural amino acid derivative, fluorenylmethoxycarbonyl-L-β-phenylalanine, as a minimalistic model. The self-shrinking properties of this hydrogel can be explored for potential applications.

View Article and Find Full Text PDF

Abnormal protein aggregation in the nervous tissue leads to several neurodegenerative disorders like Alzheimer's disease (AD). In AD, accumulation of the amyloid beta (Aβ) peptide is proposed to be an early important event in pathogenesis. Significant research efforts are devoted so as to understand the Aβ misfolding and aggregation.

View Article and Find Full Text PDF

The silver nanoparticles (AgNPs) with their unique chemical and physical properties are proving as a new therapeutical agent. In the present study, the AgNPs synthesised from an aqueous extract of a macrofungus, , were characterised by field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and further evaluate for its antibacterial and wound healing efficacy. The mycosynthesised AgNPs exhibited the surface plasmon resonance peak at 410 nm with good stability over a period of a month.

View Article and Find Full Text PDF

Collagen plays a critical role in the structural design of the extracellular matrix (ECM) and cell signaling in mammals, which makes it one of the most promising biomaterials with versatile applications. However, there is considerable concern regarding the purity and predictability of the product performance. At present, it is mainly derived as a mixture of collagen (different types) from animal tissues, where the selective enrichment of a particular type of collagen is generally difficult and expensive.

View Article and Find Full Text PDF

Red fluorescent proteins with a large Stokes shift offer a limited autofluorescence background and are used in deep tissue imaging. Here, by introducing the free amino group in Aequorea victoria, the electrostatic charges of the p-hydroxybenzylidene imidazolinone chromophore of green fluorescent protein (GFP) have been altered resulting in an unusual, 85 nm red-shifted fluorescence. The structural and biophysical analysis suggested that the red shift is due to positional shift occupancy of Glu222 and Arg96, resulting in extended conjugation and a relaxed chromophore.

View Article and Find Full Text PDF

Spectral characteristics of fluorescent proteins (FPs) are well studied, and through protein engineering, several FP variants constituting entire visible spectrum have been created. One of the most common mechanisms attributed to spectral shifts in FP is excited state proton transfer (ESPT), hydroxyl moiety protonation and deprotonation, along with chromophore isomerism. The most widely studied FPs are those derived from avGFP ( GFP) and Dsred (Discosoma coral).

View Article and Find Full Text PDF