41 results match your criteria: "Council of Scientific and Industrial Research - Central Leather Research Institute[Affiliation]"

Enzymatic dehairing as a part of the efforts for greener leather processing has reached progressive advancement with the tradition-bound tanning industry being now more receptive to cleaner processing methods due to increasing pressure from environmental groups. The dehairing mechanism is vaguely understood at present from the point of view of the enzyme specificity, which is needed for consistent and satisfactory hair removal without deleterious effect on the leather quality. Gaining insight into the dehairing specificity would help in designing efficient dehairing process.

View Article and Find Full Text PDF

Free radicals are generated by various biochemical pathways in the living system, causing severe oxidative damage to the biomolecules leading to adverse disease conditions. Hence, there is an increasing interest in antioxidant studies for preventing the effects of these free radicals. Herein, we propose a novel electrospun scaffold with antioxidant properties that can be used as wound healing material.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases involved in the regulation of the extracellular signaling and structural matrix environment of cells and tissues. MMPs are considered as promising targets for the treatment of many diseases. Therefore, creation of database on the inhibitors of MMP would definitely accelerate the research activities in this area due to its implication in above-mentioned diseases and associated limitations in the first and second generation inhibitors.

View Article and Find Full Text PDF

Human life expectancy has been steadily increasing at a rapid rate, but this increasing life span also brings about increases in diseases, dementia, and disability. A global burden of disease 2010 study revealed that hip and knee osteoarthritis ranked the 11th highest in terms of years lived with disability. Wear and tear can greatly influence the quality of life during ageing.

View Article and Find Full Text PDF

The present work reports on the structural order, self assembling behaviour and the role in adsorption to hydrophilic or hydrophobic solid surfaces of modified sequence from the triple helical peptide model of the collagenase cleavage site in type I collagen (Uniprot accession number P02452 residues from 935 to 970) using (D)Ala and (D)Ile substitutions as given in the models below: Model-1: GSOGADGPAGAOGTOGPQGIAGQRGVV GLOGQRGER. Model-2: GSOGADGP(D)AGAOGTOGPQGIAGQRGVVGLOGQRGER. Model-3: GSOGADGPAGAOGTOGPQG(D)IAGQRGVVGLOGQRGER.

View Article and Find Full Text PDF

In recent years, several fluorenylmethoxycarbonyl (Fmoc)-functionalized amino acids and peptides have been used to construct hydrogels, which find a wide range of applications. Although several hydrogels have been prepared from mono Fmoc-functionalized amino acids, herein, we demonstrate the importance of an additional Fmoc-moiety in the hydrogelation of double Fmoc-functionalized L-lysine [Fmoc(Nα)-L-lysine(NεFmoc)-OH, (Fmoc-K(Fmoc))] as a low molecular weight gelator (LMWG). Unlike other Fmoc-functionalized amino acid gelators, Fmoc-K(Fmoc) exhibits pH-controlled ambidextrous gelation (hydrogelation at different pH values as well as organogelation), which is significant among the gelators.

View Article and Find Full Text PDF

Arthritic diseases, such as osteoarthritis and rheumatoid arthritis, inflict an enormous health care burden on society. Osteoarthritis, a degenerative joint disease with high prevalence among older people, and rheumatoid arthritis, an autoimmune inflammatory disease, both lead to irreversible structural and functional damage to articular cartilage. The aim of this study was to investigate the effect of polyphenols such as catechin, quercetin, epigallocatechin gallate, and tannic acid, on crosslinking type II collagen and the roles of these agents in managing in vivo articular cartilage degradation.

View Article and Find Full Text PDF

Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern.

View Article and Find Full Text PDF

Collagen-based biomaterials have received considerable attention for smarter biomedical applications due to their inherent superior mechano-biological properties. However, accumulating evidence suggests that water, as a probe liquid bound in collagen, might be investigated to explore the influence of additives on the static and dynamic solvation behavior of collagen. The structure and dynamics of water near the surface/interface of collagen-fenugreek composites were demonstrated via circular dichroic spectroscopy, thermoporometry and impedimetric measurements to enlighten about the configuration-function relationship of collagen.

View Article and Find Full Text PDF

Background: The rhizomes of Acorus calamus and their essential oil are widely used in the flavoring industry and production of alcoholic beverages in Europe. Recent reports have confirmed the presence of several pharmacological components in the rhizomes of A. calamus.

View Article and Find Full Text PDF

A facile method utilizing RCOX/K2CO3 as a novel reagent for conjugate addition of hydrogen halide, in addition to tertiary (3°)-hydroxyl protection that leads to the synthesis of functionalized β-halo Morita-Baylis-Hillman ester appended oxindoles, has been developed. The diastereoselective one-pot O-acylation-hydrohalogenation observed cannot otherwise be performed by treatment with hydrohalide. Deprotection of a 3°-hydroxyl protecting group has also been demonstrated by treatment with hydrochloric acid.

View Article and Find Full Text PDF

This study aims at demonstrating the production of lipoprotein biosurfactant from Pseudomonas gessardii using goat tallow, a slaughterhouse lipid waste, as the substrate and its application to the removal of metal ions from aqueous solution. The maximum bio-transformation of goat tallow into biosurfactant occurred at 48 h. The mass of the lipoprotein biosurfactant produced was 2.

View Article and Find Full Text PDF

In this study, the encapsulation of F(-) in different nanotubes (NTs) has been investigated using electronic structure calculations and Car-Parrinello molecular dynamics simulations. The carbon atoms in the single walled carbon nanotube (CNT) are systematically doped with B and N atoms. The effect of the encapsulation of F(-) in the boron nitride nanotube (BNNT) has also been investigated.

View Article and Find Full Text PDF

The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters.

View Article and Find Full Text PDF

The gas phase structure, stability, spectra, and proton transfer properties of monoprotic carborane acid-water clusters [CB(11)F(m)H(11-m)(OH(2))(1)]-(H(2)O)(n) (where m = 0, 5, and 10; n = 1-6) have been calculated using density functional theory (DFT) with the Becke's three-parameter hybrid exchange functional and Lee-Yang-Parr correlation functional (B3LYP) using 6-31+G* basis set. Results reveal that Eigen cation defects are found in CBW(n) (where n = 2-6) clusters and these clusters are significantly more stable than the non-Eigen geometry. In addition to the conventional hydrogen bond (H-bond) the role of dihydrogen bond (DHB) and halogen bond (XB) in the stabilization of these clusters can be observed from the molecular graphs derived from the atoms in molecules (AIM) analysis.

View Article and Find Full Text PDF

The aggregation behavior and interaction of an amphiphilic antidepressant drug imipramine (IMP) hydrochloride with the cationic surfactant cetyltrimethylammonium bromide (CTAB) have been studied using light scattering (both static and dynamic) techniques. Due to rigid tricyclic hydrophobic moiety present in the molecule, the drug shows interesting association behavior. The static light scattering measurements show that the self-association of IMP commenced above a well-defined critical micellar concentration (CMC), which decreases with increasing the mole fraction of the CTAB surfactant.

View Article and Find Full Text PDF