183 results match your criteria: "Coriell Institute for Medical Research[Affiliation]"

Epigenome-Wide Study Identifies Epigenetic Outliers in Normal Mucosa of Patients with Colorectal Cancer.

Cancer Prev Res (Phila)

November 2022

Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.

Unlabelled: Nongenetic predisposition to colorectal cancer continues to be difficult to measure precisely, hampering efforts in targeted prevention and screening. Epigenetic changes in the normal mucosa of patients with colorectal cancer can serve as a tool in predicting colorectal cancer outcomes. We identified epigenetic changes affecting the normal mucosa of patients with colorectal cancer.

View Article and Find Full Text PDF

Pharmacogenetics (PGx) has the potential to improve opioid medication management. Here, we present patient perception data, pharmacogenetic data and medication management trends in patients with chronic pain (arm 1) and opioid use disorder (arm 2) treated at Cooper University Health Care in Camden City, NJ. Our results demonstrate that the majority of patients in both arms of the study (55% and 65%, respectively) are open to pharmacogenetic testing, and most (66% and 69%, respectively) believe that genetic testing has the potential to improve their medical care.

View Article and Find Full Text PDF

Transcriptional responses to injury of regenerative lung alveolar epithelium.

iScience

August 2022

Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.

The significance of alveolar epithelial type 2 (AT2) cell proliferation for lung alveolar epithelial homeostasis and regeneration after injury has been widely accepted. However, the heterogeneity of AT2 cell population for cell proliferation capacity remains disputed. By single-cell RNA sequencing and genetic lineage labeling using the Ki67 knock-in mouse model, we map all proliferative AT2 cells in homeostatic and regenerating murine lungs after injury induced by infection.

View Article and Find Full Text PDF

Pharmacogenetic testing is increasingly provided by clinical and research laboratories; however, only a limited number of quality control and reference materials are currently available for many of the TPMT and NUDT15 variants included in clinical tests. To address this need, the Division of Laboratory Systems, Centers for Disease Control and Prevention-based Genetic Testing Reference Material (GeT-RM) coordination program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Institute for Medical Research, has characterized 19 DNA samples derived from Coriell cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using a variety of commercially available and laboratory developed tests and/or Sanger sequencing.

View Article and Find Full Text PDF

Aberrant transcription in cancer cells involves the silencing of tumor suppressor genes (TSGs) and activation of oncogenes. Transcriptomic changes are associated with epigenomic alterations such as DNA-hypermethylation, histone deacetylation, and chromatin condensation in promoter regions of silenced TSGs. To discover novel drugs that trigger TSG reactivation in cancer cells, we used a GFP-reporter system whose expression is silenced by promoter DNA hypermethylation and histone deacetylation.

View Article and Find Full Text PDF

Hypoxia drives hematopoiesis with the enhancement of T lineage through eliciting arterial specification of hematopoietic endothelial progenitors from hESC.

Stem Cell Res Ther

June 2022

Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, Higher Education Mega Center, South China University of Technology, No.382 Waihuan East Road, Suite 406, Guangzhou, 510006, People's Republic of China.

Background: Hematopoietic stem cells are able to self-renew and differentiate into all blood cell lineages. Hematopoietic stem cell transplantation is a mainstay of life-saving therapy for hematopoietic malignancies and hypoproliferative disorders. In vitro hematopoietic differentiation of human pluripotent stem cells (hPSCs) is a promising approach for modeling hematopoietic development and cell replacement therapies.

View Article and Find Full Text PDF

An induced pluripotent stem cell line (CIMRi001-A) from a Vici syndrome donor with a homozygous recessive c.1007A>G (p.Q336R) mutation in the EPG5 gene.

Stem Cell Res

August 2022

Coriell Institute for Medical Research, Camden, NJ 08103, USA; The Orphan Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Vici syndrome is a rare, congenital disorder that affects multiple systems and is caused by mutations in the EPG5 gene that encodes for ectopic P-granules autophagy protein 5 (EPG5). The induced pluripotent stem cell (iPSC) line described here was generated from a dermal fibroblast cell line from an 8-year-old male donor with a homozygous recessive c.1007A>G (p.

View Article and Find Full Text PDF

Although morphologic progression coupled with expression of specific molecular markers has been characterized along the esophageal squamous differentiation gradient, the molecular heterogeneity within cell types along this trajectory has yet to be classified at the single cell level. To address this knowledge gap, we perform single cell RNA-sequencing of 44,679 murine esophageal epithelial, to identify 11 distinct cell populations as well as pathways alterations along the basal-superficial axis and in each individual population. We evaluate the impact of aging upon esophageal epithelial cell populations and demonstrate age-associated mitochondrial dysfunction.

View Article and Find Full Text PDF

The Epstein Barr virus (EBV) infects almost 95% of the population worldwide. While typically asymptomatic, EBV latent infection is associated with several malignancies of epithelial and lymphoid origin in immunocompromised individuals. In latently infected cells, the EBV genome persists as a chromatinized episome that expresses a limited set of viral genes in different patterns, referred to as latency types, which coincide with varying stages of infection and various malignancies.

View Article and Find Full Text PDF

The landmark paper by Kane and colleagues was the first report of DNA methylation in the promoter of the human MLH1 gene in sporadic colon cancers with mismatch repair (MMR) deficiency. In both cell lines and primary tumors, promoter methylation was associated with loss of MLH1 protein expression and with a lack of mutations in the MLH1 coding region. Together with subsequent papers that showed that this methylation was directly responsible for loss of MLH1 expression and MMR deficiency, the observation expanded the two-hit hypothesis of tumor suppressor gene loss in cancer to include both genetic and epigenetic mechanisms of gene inactivation.

View Article and Find Full Text PDF

Interleukin-6 (IL-6), a pleiotropic cytokine that regulates immune responses and inflammatory reactions, plays a pivotal role in the development of rheumatoid arthritis (RA). Blockade of IL-6 signaling with the monoclonal antibody (mAb) represents an important advancement in RA treatment. Although two IL-6 receptor antibodies are already available in the clinic, there is no mAb specifically targeting the human IL-6 to block IL-6 signaling for RA treatment.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) persists in human B-cells by maintaining its chromatinized episomes within the nucleus. We have previously shown that cellular factor Poly [ADP-ribose] polymerase 1 (PARP1) binds the EBV genome, stabilizes CTCF binding at specific loci, and that PARP1 enzymatic activity correlates with maintaining a transcriptionally active latency program. To better understand PARP1's role in regulating EBV latency, here we functionally characterize the effect of PARP enzymatic inhibition on episomal structure through in situ HiC mapping, generating a complete 3D structure of the EBV genome.

View Article and Find Full Text PDF

Although DNA methylation has been analysed in few studies for a limited number of loci in cats with diseases, genome-wide profile of DNA methylation has never been addressed. The hypothesis for this study is that next-generation sequencing with sequential digestion of genomic DNA with SmaI and XmaI enzymes could provide highly quantitative information on methylation levels in cats. Using blood from four healthy control cats and two disease cats as well as three feline lymphoma/leukemia cell lines, approximately 74-94 thousand CpG sites across the cat genome could be analysed.

View Article and Find Full Text PDF

Microsatellites, or MSATs, offer a fast and cost-effective way for biobanks to establish a biospecimen genetic profile. Importantly, this genetic profile can be used to authenticate multiple submissions derived from the same individual as well as biospecimens derived from the same original sample submission over time. While the Certificate of Confidentiality provided by the National Institutes of Health offers some meaningful protection to prevent the disclosure of potentially identifiable information to entities within the United States, we consider, in this study, the potential to offer additional protection to participants who choose to donate to biobanks by minimizing the use of forensic Combined DNA Index System (CODIS) MSAT markers in biobanking.

View Article and Find Full Text PDF

The established contribution of genetic variation to drug response has the potential to improve drug efficacy and reduce drug toxicity [...

View Article and Find Full Text PDF

Obesity and its associated comorbidities constitute a major and growing health problem worldwide not only involved with people but also dogs and cats. Although few genetic mutations have been associated with obesity in dogs, molecular mechanism remains to be clearly understood. Given the fact that DNA methylation leads to gene expression variability and has plasticity affected by metabolic phenotypes such as obesity in human, the objective of this study is to identify obesity-associated differentially methylated cytosine-phosphate-guanine (CpG) dinucleotide sites in dogs.

View Article and Find Full Text PDF
Article Synopsis
  • * TET2 mutations lead to lower levels of BRCA1 and LIG4, impairing DNA repair processes and making these cells more reliant on PARP1 for survival against DNA damage, hence they are sensitive to PARP inhibitors.
  • * In contrast, DNMT3A mutations promote traditional DNA repair methods, making DNMT3A-deficient cells resistant to PARP inhibitors, which highlights potential therapeutic strategies for targeting these mutations.
View Article and Find Full Text PDF

The Roles of DNA Demethylases in Triple-Negative Breast Cancer.

Pharmaceuticals (Basel)

June 2021

Coriell Institute Research Department, Coriell Institute for Medical Research, Camden, NJ 08103, USA.

Triple-negative breast cancers (TNBCs) are very heterogenous, molecularly diverse, and are characterized by a high propensity to relapse or metastasize. Clinically, TNBC remains a diagnosis of exclusion by the lack of hormone receptors (Estrogen Receptor (ER) and Progesterone Receptor (PR)) as well as the absence of overexpression and/or amplification of HER2. DNA methylation plays an important role in breast cancer carcinogenesis and TNBCs have a distinct DNA methylation profile characterized by marked hypomethylation and lower gains of methylations compared to all other subtypes.

View Article and Find Full Text PDF

Background: DNA methylation alterations have similar patterns in normal aging tissue and in cancer. In this study, we investigated breast tissue-specific age-related DNA methylation alterations and used those methylation sites to identify individuals with outlier phenotypes. Outlier phenotype is identified by unsupervised anomaly detection algorithms and is defined by individuals who have normal tissue age-dependent DNA methylation levels that vary dramatically from the population mean.

View Article and Find Full Text PDF

Pharmacogenetic testing is increasingly available from clinical and research laboratories. However, only a limited number of quality control and other reference materials are currently available for many of the variants that are tested. The Association for Molecular Pathology Pharmacogenetic Work Group has published a series of papers recommending alleles for inclusion in clinical testing.

View Article and Find Full Text PDF

DNA methylation plays important functions in gene expression regulation that is involved in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in companion animals like dog. Using methylation-sensitive restriction enzyme-based next generation sequencing (Canine DREAM), we obtained canine DNA methylation maps of 16 somatic tissues from two dogs.

View Article and Find Full Text PDF

Lead (Pb) is a heavy metal that has been proven to be toxic to both animals and humans. Genom-wide DNA methylation in domestic dogs exposed to high levels of Pb in Kabwe, Zambia was analyzed in this study. Using next-generation sequencing on samples from 20 domestic dogs (mean blood Pb concentration: 43.

View Article and Find Full Text PDF

Drug addiction remains a key biomedical challenge facing current neuroscience research. In addition to neural mechanisms, the focus of the vast majority of studies to date, astrocytes have been increasingly recognized as an "accomplice." According to the tripartite synapse model, astrocytes critically regulate nearby pre- and postsynaptic neuronal substrates to craft experience-dependent synaptic plasticity, including synapse formation and elimination.

View Article and Find Full Text PDF

Pharmacogenomics holds the promise of personalized drug efficacy optimization and drug toxicity minimization. Much of the research conducted to date, however, suffers from an ascertainment bias towards European participants. Here, we leverage publicly available, whole genome sequencing data collected from global populations, evolutionary characteristics, and annotated protein features to construct a new in silico machine learning pharmacogenetic identification method called XGB-PGX.

View Article and Find Full Text PDF