4 results match your criteria: "Conventionné avec l'Université de Strasbourg Strasbourg[Affiliation]"

When RNA and protein degradation pathways meet.

Front Plant Sci

June 2014

Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg Strasbourg, France ; Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Montpellier Cedex France.

RNA silencing has become a major focus of molecular and biomedical research in the last decade. This mechanism, which is conserved in most eukaryotes, has been extensively studied and is associated to various pathways implicated in the regulation of development, in the control of transposition events, heterochromatin maintenance and also playing a role in defense against viruses. Despite of its importance, the regulation of the RNA silencing machinery itself remains still poorly explored.

View Article and Find Full Text PDF

GIP/MZT1 proteins orchestrate nuclear shaping.

Front Plant Sci

June 2014

Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Conventionné avec l'Université de Strasbourg Strasbourg, France.

The functional organization of the nuclear envelope (NE) is only just emerging in plants with the recent characterization of NE protein complexes and their molecular links to the actin cytoskeleton. The NE also plays a role in microtubule nucleation by recruiting γ-Tubulin Complexes (γ-TuCs) which contribute to the establishment of a robust mitotic spindle. γ-tubulin Complex Protein 3 (GCP3)-interacting proteins (GIPs) have been identified recently as integral components of γ-TuCs.

View Article and Find Full Text PDF

During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs) are nucleated from γ-Tubulin Complexes (γ-TuCs) located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope (NE) are currently unknown.

View Article and Find Full Text PDF