51 results match your criteria: "Consejo Superior de Investigaciones Científicas and University of Salamanca[Affiliation]"
Bioinform Adv
November 2024
School of Computer Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
Motivation: Developing competency in the broad area of bioinformatics is challenging globally, owing to the breadth of the field and the diversity of its audiences for education and training. Course design can be facilitated by the use of a competency framework-a set of competency requirements that define the knowledge, skills and attitudes needed by individuals in (or aspiring to be in) a particular profession or role. These competency requirements can help to define curricula as they can inform both the content and level to which competency needs to be developed.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain.
In this paper, we present a comparative analysis of the transcriptomic profile of three different human cell types: hematopoietic stem cells (HSCs), bone marrow-derived mesenchymal stem cells (MSCs) and fibroblasts (FIBs). The work aims to identify unique genes that are differentially expressed as specific markers of bone marrow-derived MSCs, and to achieve this undertakes a detailed analysis of three independent datasets that include quantification of the global gene expression profiles of three primary cell types: HSCs, MSCs and FIBs. A robust bioinformatics method, called , is used to assess the specific association between one or more genes expressed in a sample and the outcome variable, that is, the 'cell type' provided as a single univariate response.
View Article and Find Full Text PDFBlood Cancer J
May 2024
Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), and University of Salamanca, Salamanca, Spain.
Curr Opin Cell Biol
April 2024
Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain. Electronic address:
The emergence of mechanobiology has unveiled complex mechanisms by which cells adjust intracellular force production to their needs. Most communicable intracellular forces are generated by myosin II, an actin-associated molecular motor that transforms adenosine triphosphate (ATP) hydrolysis into contraction in nonmuscle and muscle cells. Myosin II-dependent force generation is tightly regulated, and deregulation is associated with specific pathologies.
View Article and Find Full Text PDFRes Sq
February 2024
Universidad de Salamanca-CSIC. IBSAL.
Post-pregnancy breast cancer often carries a poor prognosis, posing a major clinical challenge. The increasing trend of later-life pregnancies exacerbates this risk, highlighting the need for effective chemoprevention strategies. Current options, limited to selective estrogen receptor modulators, aromatase inhibitors, or surgical procedures, offer limited efficacy and considerable side effects.
View Article and Find Full Text PDFUrol Oncol
March 2024
Surgery and Anatomy Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil; Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil. Electronic address:
Background: The median age for Prostate Cancer (PCa) diagnosis is 66 years, but 10% are diagnosed before 55 years. Studies on early-onset PCa remain both limited and controversial. This investigation sought to identify and characterize germline variants within Brazilian PCa patients classified as either early or later onset disease.
View Article and Find Full Text PDFFront Immunol
December 2023
Translational and Clinical Research Program, Centro de investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain.
Front Cell Dev Biol
September 2023
Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain.
Both the number and regenerative activity of hair follicle stem cells (HFSCs) are regulated by Vav2, a GDP/GTP exchange factor involved in the catalytic stimulation of the GTPases Rac1 and RhoA. However, whether Vav2 signaling changes in HFSCs over the mouse lifespan is not yet known. Using a mouse knock-in mouse model, we now show that the expression of a catalytically active version of Vav2 (Vav2) promotes an extensive rewiring of the overall transcriptome of HFSCs, the generation of new transcription factor hubs, and the synchronization of many transcriptional programs associated with specific HFSC states and well-defined signaling pathways.
View Article and Find Full Text PDFBMC Genomics
September 2023
BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal.
Background: Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) share phenotypic and molecular commonalities, including the fact that they can be caused by mutations in ubiquitous proteins involved in RNA metabolism, namely SMN, TDP-43 and FUS. Although this suggests the existence of common disease mechanisms, there is currently no model to explain the resulting motor neuron dysfunction. In this work we generated a parallel set of Drosophila models for adult-onset RNAi and tagged neuronal expression of the fly orthologues of the three human proteins, named Smn, TBPH and Caz, respectively.
View Article and Find Full Text PDFMol Cancer
July 2023
Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.
Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N-methylguanosine (mG) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of mG tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments.
View Article and Find Full Text PDFBioinform Adv
March 2023
Cancer Research Center (CiC-IMBCC, CSIC/USAL and IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca 37007, Spain.
Motivation: Modern genomic technologies allow us to perform genome-wide analysis to find gene markers associated with the risk and survival in cancer patients. Accurate risk prediction and patient stratification based on robust gene signatures is a key path forward in personalized treatment and precision medicine. Several authors have proposed the identification of gene signatures to assign risk in patients with breast cancer (BRCA), and some of these signatures have been implemented within commercial platforms in the clinic, such as Oncotype and Prosigna.
View Article and Find Full Text PDFCancers (Basel)
January 2023
Department of Medicine and General Service of Cytometry, CIBERONC-CB16/12/00400, Cancer Research Centre-IBMCC, CSIC-USAL, IBSAL, Campus Miguel de Unamuno s/n, University of Salamanca-CSIC, 37008 Salamanca, Spain.
Ther Adv Hematol
December 2022
Cell Therapy Area, Department of Hematology, Institute of Biomedical Research of Salamanca-Hospital Universitario de Salamanca (IBSAL-HUS), Salamanca, Spain.
Background: Eltrombopag (EP) is a small molecule that acts directly on hematopoietic stem cells (HSCs) and megakaryocytes to stimulate the hematopoietic process. Mesenchymal stem/stromal cells (MSCs) are key hematopoietic niche regulators.
Objectives: We aimed to determine whether EP has any effect on MSC function and properties (especially on their hematopoietic-supporting ability) and if so, what changes (e.
Blood
January 2023
Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), and University of Salamanca (Universidad de Salamanca), Salamanca, Spain; Cytometry Service (NUCLEUS), Salamanca, Spain.
Front Immunol
October 2022
Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
Nucleic Acids Res
June 2022
Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
Generation of haploid gametes depends on a modified version of homologous recombination in meiosis. Meiotic recombination is initiated by single-stranded DNA (ssDNA) ends originating from programmed DNA double-stranded breaks (DSBs) that are generated by the topoisomerase-related SPO11 enzyme. Meiotic recombination involves chromosomal synapsis, which enhances recombination-mediated DSB repair, and thus, crucially contributes to genome maintenance in meiocytes.
View Article and Find Full Text PDFCancers (Basel)
December 2021
Experimental Tumor Pathology, University Hospital of the Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
The epithelial-mesenchymal transition (EMT) is associated with tumor aggressiveness and increased invasion, migration, metastasis, angiogenesis, and drug resistance. Although the HCT116 p21-/- cell line is well known for its EMT-associated phenotype, with high Vimentin and low E-cadherin protein levels, the gene signature of this rather intermediate EMT-like cell line has not been determined so far. In this work, we present a robust molecular and bioinformatics analysis, to reveal the associated gene expression profile and its correlation with different types of colorectal cancer tumors.
View Article and Find Full Text PDFCells
September 2021
Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain.
During meiosis, the budding yeast polo-like kinase Cdc5 is a crucial driver of the prophase I to meiosis I (G2/M) transition. The meiotic recombination checkpoint restrains cell cycle progression in response to defective recombination to ensure proper distribution of intact chromosomes to the gametes. This checkpoint detects unrepaired DSBs and initiates a signaling cascade that ultimately inhibits Ndt80, a transcription factor required for gene expression.
View Article and Find Full Text PDFPLoS Comput Biol
August 2021
Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
PLoS Genet
July 2021
Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain.
During meiosis, defects in critical events trigger checkpoint activation and restrict cell cycle progression. The budding yeast Pch2 AAA+ ATPase orchestrates the checkpoint response launched by synapsis deficiency; deletion of PCH2 or mutation of the ATPase catalytic sites suppress the meiotic block of the zip1Δ mutant lacking the central region of the synaptonemal complex. Pch2 action enables adequate levels of phosphorylation of the Hop1 axial component at threonine 318, which in turn promotes activation of the Mek1 effector kinase and the ensuing checkpoint response.
View Article and Find Full Text PDFMol Cancer
April 2021
Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain.
Trends Microbiol
February 2021
Department of Oncology, University of Turin, IT-10126, Turin, Italy. Electronic address:
Despite the international guidelines on the containment of the coronavirus disease 2019 (COVID-19) pandemic, the European scientific community was not sufficiently prepared to coordinate scientific efforts. To improve preparedness for future pandemics, we have initiated a network of nine European-funded Cooperation in Science and Technology (COST) Actions that can help facilitate inter-, multi-, and trans-disciplinary communication and collaboration.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2020
Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain.
The H2A.Z histone variant is deposited into the chromatin by the SWR1 complex, affecting multiple aspects of meiosis. We describe here a SWR1-independent localization of H2A.
View Article and Find Full Text PDFSci Rep
November 2020
Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain.
RNA-seq is currently considered the most powerful, robust and adaptable technique for measuring gene expression and transcription activation at genome-wide level. As the analysis of RNA-seq data is complex, it has prompted a large amount of research on algorithms and methods. This has resulted in a substantial increase in the number of options available at each step of the analysis.
View Article and Find Full Text PDFPLoS Genet
October 2020
Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States of America.
Epigenetic modifiers are emerging as important regulators of the genome. However, how they regulate specific processes during meiosis is not well understood. Methylation of H3K79 by the histone methyltransferase Dot1 has been shown to be involved in the maintenance of genomic stability in various organisms.
View Article and Find Full Text PDF