9 results match your criteria: "Complesso universitario di Monte S. Angelo ed. 6[Affiliation]"

Second-Order Mass-Weighting Scheme for Atom-Centered Density Matrix Propagation Molecular Dynamics.

J Chem Theory Comput

October 2024

Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy.

The atom-centered density matrix propagation (ADMP) method is an extended Lagrangian approach to ab initio molecular dynamics, which includes the density matrix in an orthonormalized atom-centered Gaussian basis as additional, fictitious, electronic degrees of freedom, classically propagated along with the nuclear ones. A high adiabaticity between the nuclear and electronic subsystems is mandatory in order to keep the trajectory close to the Born-Oppenheimer (BO) surface. In this regard, the fictitious electronic mass , being a symmetric, nondiagonal matrix in its most general form, represents a free parameter, exploitable to optimize the propagation of the electronic density.

View Article and Find Full Text PDF

The main challenge for solar cell devices is harvesting photons beyond the visible by reaching the red-edge (650-780 nm). Dye-sensitized solar cell (DSSC) devices combine the optical absorption and the charge separation processes by the association of a sensitizer as a light-absorbing material (dye molecules, whose absorption can be tuned and designed) with a wide band gap nanostructured semiconductor. Conformational and environmental effects (i.

View Article and Find Full Text PDF

Evidence of Excited-State Vibrational Mode Governing the Photorelaxation of a Charge-Transfer Complex.

J Phys Chem A

March 2024

Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy.

Modern, nonlinear, time-resolved spectroscopic techniques have opened new doors for investigating the intriguing but complex world of photoinduced ultrafast out-of-equilibrium phenomena and charge dynamics. The interaction between light and matter introduces an additional dimension, where the complex interplay between electronic and vibrational dynamics needs the most advanced theoretical-computational protocols to be fully understood on the molecular scale. In this study, we showcase the capabilities of ab initio molecular dynamics simulation integrated with a multiresolution wavelet protocol to carefully investigate the excited-state relaxation dynamics in a noncovalent complex involving tetramethylbenzene (TMB) and tetracyanoquinodimethane (TCNQ) undergoing charge transfer (CT) upon photoexcitation.

View Article and Find Full Text PDF

Watching the Interplay between Photoinduced Ultrafast Charge Dynamics and Nuclear Vibrations.

J Chem Theory Comput

December 2023

Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy.

Here is presented the ultrafast hole-electron dynamics of photoinduced metal to ligand charge-transfer (MLCT) states in a Ru(II) complex, [Ru(dcbpy)(NCS)] (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine), a photoactive molecule employed in dye sensitized solar cells. Via cutting-edge computational techniques, a tailored computational protocol is here presented and developed to provide a detailed analysis of the electronic manifold coupled with nuclear vibrations to better understand the nonradiative pathways and the resulting overall dye performances in light-harvesting processes (electron injection). Thus, the effects of different vibrational modes were investigated on both the electronic levels and charge transfer dynamics through a theoretical-computational approach.

View Article and Find Full Text PDF

Nature of the Ultrafast Interligands Electron Transfers in Dye-Sensitized Solar Cells.

JACS Au

January 2023

Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy.

Charge-transfer dynamics and interligand electron transfer (ILET) phenomena play a pivotal role in dye-sensitizers, mostly represented by the Ru-based polypyridyl complexes, for TiO and ZnO-based solar cells. Starting from metal-to-ligand charge-transfer (MLCT) excited states, charge dynamics and ILET can influence the overall device efficiency. In this letter, we focus on N3 dye ( [Ru(dcbpy)(NCS)], dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) to provide a first direct observation with high time resolution (<20 fs) of the ultrafast electron exchange between bpy-like ligands.

View Article and Find Full Text PDF

Understanding Charge Dynamics in Dense Electronic Manifolds in Complex Environments.

J Chem Theory Comput

January 2023

Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy.

Photoinduced charge transfer (CT) excited states and their relaxation mechanisms can be highly interdependent on the environment effects and the consequent changes in the electronic density. Providing a molecular interpretation of the ultrafast (subpicosecond) interplay between initial photoexcited states in such dense electronic manifolds in condensed phase is crucial for improving and understanding such phenomena. Real-time time-dependent density functional theory is here the method of choice to observe the charge density, explicitly propagated in an ultrafast time domain, along with all time-dependent properties that can be easily extracted from it.

View Article and Find Full Text PDF

The eruption of the Hunga-Tonga volcano in the South Pacific Ocean on January 15, 2022, at about 4:15 UTC, generated a violent explosion, which created atmospheric pressure disturbances in the form of Rayleigh-Lamb waves detected all over the globe. Here we discuss the observation of the Hunga-Tonga shock-wave performed at the Ny-Ålesund Research Station on the Spitsbergen island, by the detectors of the PolarquEEEst experiment and their ancillary sensors. Online pressure data as well as the results of dedicated offline analysis are presented and discussed in details.

View Article and Find Full Text PDF

The interplay between light absorption and the molecular environment has a central role in the observed photophysics of a wide range of photoinduced chemical and biological phenomena. The understanding of the interplay between vibrational and electronic transitions is the focus of this work, since it can provide a rationale to tune the optical properties of charge transfer (CT) materials used for technological applications. A clear description of these processes poses a nontrivial challenge from both the theoretical and experimental points of view, where the main issue is how to accurately describe and probe drastic changes in the electronic structure and the ultrafast molecular relaxation and dynamics.

View Article and Find Full Text PDF

Assessing energy performance and critical issues of a large wastewater treatment plant through full-scale data benchmarking.

Water Sci Technol

October 2019

Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy E-mail: INFN - Sezione di Napoli, Complesso universitario di Monte S. Angelo ed. 6, Via Cintia, 80126, Napoli, Italy.

The wastewater sector accounts for 25% of the global energy demand in the water sector. Since this consumption is expected to increase in the forthcoming years, energy optimization strategies are needed. A truly effective planning of energy improvement measures requires a detailed knowledge of a system, which can only be achieved through energy audit and real-time monitoring.

View Article and Find Full Text PDF