18 results match your criteria: "Combichem-Bioresource Center[Affiliation]"

Two antibacterial spiro compounds from the roots of wall: evidence from molecular docking.

Nat Prod Res

May 2022

R&D Centre in Pharmaceutical Sciences and Applied Chemistry, Poona College of Pharmacy Campus, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India.

Bioassay-guided isolation from acetone extract of the roots of Wall yielded two spiro compounds ( and ). The structures of these compounds were determined on the basis of spectroscopic techniques such as IR, MS, 1 D and 2 D- NMR. The acetone extract, fractions and the isolated two compounds were investigated for their antibacterial activity against two gram negative (, ) and two gram positive (, ) bacterial strains.

View Article and Find Full Text PDF

Background: Diarylquinolines like Bedaquiline have shown promising antitubercular activity by their action of Mycobacterial ATPase.

Objective: The structural features necessary for a good antitubercular activity for a series of quinoline derivatives were explored through computational chemistry tools like QSAR and combinatorial library generation. In the current study, 3-Chloro-4-(2-mercaptoquinoline-3-yl)-1- substitutedphenylazitidin-2-one derivatives have been designed and synthesized based on molecular modeling studies as anti-tubercular agents.

View Article and Find Full Text PDF

Background: Management of Co-existence of Acquired immunodeficiency syndrome and Tuberculosis has become a global challenge due to the emergence of resistant strains and pill burden.

Objective: Hence the aim of the present work was to design and evaluate compounds for their dual activity on HIV-1 and Tuberculosis (TB).

Methods: A series of seven, novel Thiazolidin-4-one derivatives were synthesized and evaluated for their anti-HIV and anti-tubercular activity along with Molecular docking studies.

View Article and Find Full Text PDF

Sophorolipids (SLs) are glycolipid biosurfactants that have been shown to display anticancer activity. In the present study, we report anti-proliferative studies on purified forms of novel SLs synthesized using cetyl alcohol as the substrate (referred as SLCA) and their anticancer mechanism in human cervical cancer cells. Antiproliferative effect of column purified SLCA fractions (A, B, C, D, E and F) was examined in panel of human cancer cell lines as well as primary cells.

View Article and Find Full Text PDF

Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents.

Int J Nanomedicine

December 2016

Department of Microbiology, Savitribai Phule Pune University, Pune, India; Dr Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India.

Purpose: Multi- and extensively drug-resistant tuberculosis (TB) is a global threat to human health. It requires immediate action to seek new antitubercular compounds and devise alternate strategies. Nanomaterials, in the present scenario, have opened new avenues in medicine, diagnosis, and therapeutics.

View Article and Find Full Text PDF

The persistence of Mycobacterium tuberculosis (MTB) in dormant stage assists the pathogen to develop resistance against current antimycobactrial drugs. To address this issue, we report herein the synthesis of N-(4-oxo-2 substituted thiazolidin-3 yl) pyrazine-2-carbohydrazide derivatives designed by following the molecular hybridization approach using pyrazine and thiazolidenone scaffolds. The compounds were evaluated against MTB H37Ra and Mycobacterium bovis BCG in dormancy model.

View Article and Find Full Text PDF

In search of new active molecules against Mycobacterium tuberculosis (MTB) H37Ra and Mycobacterium bovis BCG, a small focused library of rhodanine incorporated tetrazoloquinoline has been efficiently synthesized by using [HDBU][HSO4] acidic ionic liquid. The compound 3c found to be promising inhibitor of MTB H37Ra and M. bovis BCG characterized by lower MIC values 4.

View Article and Find Full Text PDF

We have developed, highly efficient, one-pot, solvent-free, [Et3NH][HSO4] catalyzed multicomponent reaction protocol for the synthesis of 1,3-thiazolidin-4-ones in excellent yields. For the first time, the 1,3-thiazolidin-4-ones were evaluated in vitro for their antimycobacterial activity against Mycobacterium tuberculosis dormant MTB H37Ra and Mycobacterium bovis BCG strains. Among the synthesized basic 1,3-thiazolidin-4-ones, particularly the compounds 4c, 4d, 4e, 4f, 4h, 4i and 4j displays promising antitubercular activity along with no significant cytotoxicity against the cell lines MCF-7, A549 and HCT-116.

View Article and Find Full Text PDF

Background: Inflammation triggered by oxidative stress can cause various ailments, such as cancer, rheumatoid arthritis, asthma, diabetes etc. In the last few years, there has been a renewed interest in studying the antioxidant and anti-inflammatory action of plant constituents such as flavonoids and diarylheptanoids.

Aim: To evaluate the antioxidant, anti-inflammatory activity and the total phenolic content of isolated compounds from Alpinia officinarum rhizomes.

View Article and Find Full Text PDF

The antiproliferative activity of two chito-specific agglutinins purified from Benincasa hispida (BhL) and Datura innoxia (DiL9) of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay.

View Article and Find Full Text PDF

We report design of a series of 2,4-diamino triazines as Mycobacterium tuberculosis (Mtb) dihydrofolate reductase inhibitors. The synthesized compounds were evaluated against Mtb (H37Rv and Dormant stage H37Ra), their cytotoxicity was assessed (HepG2 and A549 cell lines), and selectivity toward Mtb was evaluated by testing against other bacterial strains. Some derivatives showed promising activity along with low cytotoxicity.

View Article and Find Full Text PDF

We have synthesized a series of novel 11α-triazoyl bile acid derivatives. In addition, we also have synthesized N-alkyl and N-acyl derivatives of C-11 amino bile acid esters. All the compounds were evaluated for the inhibitory activity against Mycobacterium tuberculosis H37Ra (MTB) at 30 μg/mL level.

View Article and Find Full Text PDF

Background: A series of 2,4-diamino-s-triazines was designed, with potential for activity against Mycobacterium tuberculosis (Mtb) dihydrofolate reductase enzyme, on the basis of virtual screening results and structure-based drug design.

Results: The compounds were evaluated against Mtb (H37Rv) and their cytotoxicity was assessed using VERO cell lines. Of particular note, two compounds were found to have the most promising antituberculosis activity (6b minimum inhibitory concentration: 1.

View Article and Find Full Text PDF

Qualitative and quantitative proteomic analysis of Vitamin C induced changes in Mycobacterium smegmatis.

Front Microbiol

June 2015

Council of Scientific and Industrial Research-National Chemical Laboratory, Organic Chemical Division, Combichem Bioresource Center Pune, India.

Vitamin C is a critical dietary nutrient in human which has a wide range of regulatory effects on gene expression and physiology of Mycobacterium tuberculosis that leads to a dormant drug-tolerant phenotype. In the presence of iron, vitamin C shows a high bactericidal activity even in the drug resistant phenotype of M. tuberculosis.

View Article and Find Full Text PDF

Resistance among mycobacteria leading to multidrug-resistant and extensively drug-resistant tuberculosis is a major threat. However, nanotechnology has provided new insights in drug delivery and medicine development. This is the first comparative report to determine the activity of chemically and biologically synthesised silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) against mycobacteria.

View Article and Find Full Text PDF
Article Synopsis
  • Phytochemicals from Catharanthus roseus and Tylophora indica have shown potential to inhibit the malaria parasite Plasmodium falciparum, especially against chloroquine resistance.
  • A computational model of the chloroquine resistance transporter (PfCRT) protein was created using advanced tools to simulate conditions of drug resistance.
  • Molecular interactions between selected phytochemicals and PfCRT were analyzed, indicating that these compounds can effectively bind to the protein and potentially aid in overcoming chloroquine resistance.
View Article and Find Full Text PDF

The development of a macrophage-based, antitubercular high-throughput screening system could expedite discovery programs for identifying novel inhibitors. In this study, the kinetics of nitrate reduction (NR) by Mycobacterium tuberculosis during growth in Thp1 macrophages was found to be almost parallel to viable bacilli count. NR in the culture medium containing 50 mM of nitrate was found to be optimum on the fifth day after infection with M.

View Article and Find Full Text PDF

Mycobacterium tuberculosis glutamine synthetase (GS) is an essential enzyme involved in the pathogenicity of the organism. The screening of a compound library using a robust high-throughput screening (HTS) assay is currently thought to be the most efficient way of getting lead molecules, which are potent inhibitors for this enzyme. The authors have purified the enzyme to a >90% level from the recombinant Escherichia coli strain YMC21E, and it was used for partial characterization as well as standardization experiments.

View Article and Find Full Text PDF