2,296 results match your criteria: "Colorado School of Mines[Affiliation]"

Although the sensitivity of the circadian system to the characteristics of light (e.g., biological timing, intensity, duration, spectrum) has been well studied in adults, data in early childhood remain limited.

View Article and Find Full Text PDF

Isolation of Inner-Sphere Aquo Complexes of Samarium(II).

J Am Chem Soc

January 2025

Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States.

The and isomers of [Sm(dicyclohexano-18-crown-6)(HO)]I exhibiting water molecules bound to the Sm ion have been isolated and characterized. Sm possesses an electrochemical potential sufficient for water reduction, and thus these complexes add to the recent body of evidence that the oxidation of Sm by water can operate by a mechanism that is not straightforward. These complexes are obtained by the direct addition of stoichiometric amounts of water to solutions of the respective Sm(dicyclohexano-18-crown-6)I isomers under an inert atmosphere.

View Article and Find Full Text PDF

Lanthanides (Ln) are typically found in the +3 oxidation state. However, in recent decades, their chemistry has been expanded to include the less stable +2 oxidation state across the entire series except promethium (Pm), facilitated by the coordination of ligands such as trimethylsilylcyclopentadienyl, CHSiMe (Cp'). The complexes have been the workhorse for the synthesis and theoretical study of the fundamental aspects of divalent lanthanide chemistry, where experimental and computational evidence have suggested the existence of different ground state (GS) configurations, 4f or 4f 5d, depending on the specific metal.

View Article and Find Full Text PDF

Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields.

View Article and Find Full Text PDF

Mechanistic Analysis of Peptide Affinity to Single-Walled Carbon Nanotubes and Volatile Organic Compounds Using Chemiresistors.

ACS Appl Mater Interfaces

December 2024

Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States.

Peptides, due to their diverse and controllable properties, are used as both liquid and gas phase recognition elements for both biological and chemical targets. While it is well understood how binding of a peptide to a biomolecule can be converted into a sensing event, there is not the same mechanistic level of understanding with regard to how peptides modulate the selectivity of semiconductor/conductor-based gas sensors. Notably, a rational, mechanistic study has not yet been performed to correlate peptide properties to the sensor response for volatile organic compounds (VOCs) as a function of chemical properties.

View Article and Find Full Text PDF

Unlabelled: This assessment was designed to explore and characterize the airborne particles, especially for the sub-micrometer sizes, in an underground coal mine. Airborne particles present in the breathing zone were evaluated by using both (1) direct reading real-time instruments (RTIs) to measure real-time particle number concentrations in the workplaces and (2) gravimetric samplers to collect airborne particles to obtain mass concentrations and conduct further characterizations. Airborne coal mine particles were collected via three samplers: inhalable particle sampler (37 mm cassette with polyvinyl chloride (PVC) filter), respirable dust cyclone (10 mm nylon cyclone with 37 mm Zefon cassette and PVC filter), and a Tsai diffusion sampler (TDS).

View Article and Find Full Text PDF

Though power conversion is an important metric for photovoltaic windows, it must be balanced with visible transmittance, aesthetics (color and haze), and thermal performance. Optical properties are often reported, but thermal performance is typically neglected entirely in photovoltaic window design. Here, we introduce the strategy of using laminate layers to improve the thermo-optical performance of perovskite-based photovoltaic insulating glass units.

View Article and Find Full Text PDF

GaAs Solar Cells Grown Directly on V-Groove Si Substrates.

ACS Appl Mater Interfaces

December 2024

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.

View Article and Find Full Text PDF

Autonomous online optimization of a closed-circuit reverse osmosis system.

Water Res X

January 2025

Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA.

As freshwater becomes increasingly scarce, many industrial and municipal water utilities look at premise-scale water treatment and reuse to meet water demand. Closed-circuit reverse osmosis (CCRO) has been proposed as a promising process design to do so. This sequencing batch process enables operation at higher brine salinity levels by means of a recycle flow.

View Article and Find Full Text PDF

Compositional diversity and intriguing structural features have made Zintl phases excellent candidates as thermoelectric materials. Zintl phase with 21-4-18 composition has shown high thermoelectric performance in the mid- to high-temperature ranges. The complex crystal structure and favorable transport properties of these compounds indicate the potential for high thermoelectric efficiency.

View Article and Find Full Text PDF

To develop the structural chemistry of radium, the halide compounds RaX·HO and RaX·2HO (X = Cl and Br) have been synthesized and characterized and serve as benchmarks for comparisons with more complex compounds in the future. In contrast with historic reports on the structural chemistry of radium, the Ra chlorides differ from their Ba analogues. For MCl·HO (M = Ba, Ra), the variance between the metal coordination environments manifests as a small, local distortion that becomes more apparent in the extended structure.

View Article and Find Full Text PDF

Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from , has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization.

View Article and Find Full Text PDF

is a spore-forming gram-positive bacterium responsible for anthrax, an infectious disease with a high mortality rate and a target of concern due to bioterrorism and long-term site contamination. The entire surface of vegetative cells in exponential or stationary growth phase is covered in proteinaceous arrays called S-layers, composed of Sap or EA1 protein, respectively. The Sap S-layer represents an important virulence factor and cell envelope support structure whose paracrystalline nature is essential for its function.

View Article and Find Full Text PDF

White-rot fungi (WRF) are the most efficient lignin-degrading organisms in nature. However, their capacity to use lignin-related aromatic compounds, such as 4-hydroxybenzoate, as carbon sources has only been described recently. Previously, the hydroxyquinol pathway was proposed for the bioconversion of these compounds in fungi, but gene- and structure-function relationships of the full enzymatic pathway remain uncharacterized in any single fungal species.

View Article and Find Full Text PDF

Porous solids for energy applications.

J Chem Phys

November 2024

Phases to Flow Laboratory, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA.

View Article and Find Full Text PDF

Surveying Phase Modifier Functional Groups for Applications to Ln(III) Separations.

ACS Omega

November 2024

Department of Chemistry, Colorado School of Mines, 1500 Illinois St, Golden, Colorado 80401, United States.

The application of ,,','-tetraoctyl diglycolamide (TODGA) in solvent extraction systems for lanthanide (Ln) separations is well understood. In these systems, the formation of a third phase has motivated the use of phase modifiers to enable higher concentrations of H and Ln common to industrial processes. Several different phase modifiers with applications to diglycolamide (DGA) systems have previously been reported, with a focus on tri--butyl phosphate (TBP), ,'-dihexylactanamide (DHOA), -dioctyl-2-hydroxyacetamide (DOHyA), ,'-dimethyl-,'-dioctylhexylethoxy malonamide (DMDOHEMA), and octanol.

View Article and Find Full Text PDF

Rapid restoration of blood flow is critical in treating acute ischemic stroke. Current fibrinolytic therapies using tissue plasminogen activator (tPA) are limited by low recanalization rates and risks of off-target bleeding. Here, we present a strategy using tPA immobilized on micrometer-scale beads to enhance local plasmin generation.

View Article and Find Full Text PDF

Acoustic scattering and "failure" of the optical theorem.

J Acoust Soc Am

November 2024

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado 80401, USA.

For plane wave scattering by an obstacle, the optical theorem relates the scattering cross section to the far-field scattered field in the forward direction. This simple and useful result fails to hold when the incident field is not a plane wave. "Failures" of this kind are explored.

View Article and Find Full Text PDF

Dietary intake can be an important exposure route to per- and polyfluoroalkyl substances (PFASs). Little is known about the bioaccumulation of emerging per- and polyfluoroalkyl ether acids (PFEAs) in garden produce from PFAS-impacted communities and the associated dietary exposure risk. In this study, 53 produce samples were collected from five residential gardens near a fluorochemical manufacturer.

View Article and Find Full Text PDF
Article Synopsis
  • Several products claim to effectively clean PFAS from AFFF-impacted fire suppression systems, but their long-term effectiveness is still uncertain.
  • Experiments on different cleaning solutions showed that completely removing PFAS from stainless steel pipes is extremely challenging due to potential PFAS accumulation on pipe surfaces.
  • Understanding the rebound behavior of PFAS and the mechanisms involved is crucial for enhancing cleaning processes and managing contaminated materials in fire suppression systems.
View Article and Find Full Text PDF

Two-molecule theory of polyethylene liquids.

J Chem Phys

November 2024

Department of Chemistry, The College of Idaho, Caldwell, Idaho 83605, USA.

Two-molecule theory refers to a class of microscopic, self-consistent field theories for the radial distribution function in classical molecular liquids. The version examined here can be considered as one of the very few formally derived closures to the reference interaction site model (RISM) equation. The theory is applied to polyethylene liquids, computing their equilibrium structural and thermodynamic properties at melt densities.

View Article and Find Full Text PDF

We investigate the impact of a 20-yr irrigation on root water uptake (RWU) and drought stress release in a naturally dry Scots pine forest. We use a combination of electrical resistivity tomography to image RWU, drone flights to image the crown stress and sensors to monitor soil water content. Our findings suggest that increased water availability enhances root growth and resource use efficiency, potentially increasing trees' resistance to future drought conditions by enabling water uptake from deeper soil layers.

View Article and Find Full Text PDF

The increased detection of understudied per- and polyfluoroalkyl substances (PFAS) in environmental matrices has highlighted the need to evaluate the treatability of a wide-range of PFAS by sorption-based processes. This study investigated the efficacy of three commercial adsorbents (i.e.

View Article and Find Full Text PDF

Estimating Methane Emission Durations Using Continuous Monitoring Systems.

Environ Sci Technol Lett

November 2024

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado 80401, United States.

We propose a method for estimating methane emission durations on oil and gas sites, referred to as the Probabilistic Duration Model (PDM), that uses concentration data from continuous monitoring systems (CMS). The PDM probabilistically addresses a key limitation of CMS: nondetect times, or the times when wind blows emitted methane away from the CMS sensors (resulting in no detections). Output from the PDM can be used to bound the duration of emissions detected by survey-based technologies, such as plane or satellites, that have limited ability to characterize durations due to the typically low temporal frequency (e.

View Article and Find Full Text PDF

C points, circular polarization in momentum space, play crucial roles in chiral wave manipulations. However, conventional approaches of achieving intrinsic C points using photonic crystals with broken symmetries suffer from a low factor and high sensitivity to structural geometry, rendering them fragile and susceptible to perturbations and disorders. We report magneto-optical (MO) bound states in the continuum (BICs) with a symmetry-preserved planar photonic crystal.

View Article and Find Full Text PDF