8,886 results match your criteria: "College of physics[Affiliation]"
Angew Chem Int Ed Engl
February 2025
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
Developing high-voltage electrolytes to stabilize LiCoO (LCO) cycling remains a challenge in lithium-ion batteries. Constructing a high-quality cathode electrolyte interphase (CEI) is essential to mitigate adverse reactions at high voltages. However, conventional inorganic CEIs dominated by LiF have shown limited performance for high-voltage LCO.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2025
College of Physics, Donghua University, Shanghai, 201620, China.
Nanotechnology
December 2024
College of Physics and Energy, Qinghai Nationalities University, Xining 810007, People's Republic of China.
Two-dimensional MC-MXenes, characterized by their lightweight nature, tunable surface structures, and strong affinity for hydrogen, hold significant promise for addressing various challenges in hydrogen energy utilization. This study focuses on investigating the hydrogen adsorption and desorption properties, as well as the stability of hydrogenated compounds in 19 pure MC-MXenes nanosheets. The results indicate that hydrogen adsorption on MC primarily occurs through weak physisorption, with MnC and FeC from the fourth period, and AgC and CdC from the fifth period exhibiting the lowest adsorption energies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, PR China.
Aqueous zinc-ion batteries (AZIBs) have garnered widespread attention due to their promising development and application prospects. However, progress of AZIBs has been hindered by zinc (Zn) dendrites and side reactions at the electrode-electrolyte interface (EEI). In particular, the large and uneven pores of commercial glass fiber (GF) separators lead to nonuniform Zn transport, which causes side reactions.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
College of Physics and Electronics, Shandong Normal University, Jinan ,Shandong 250014 ,China.
A combined multilevel quantum mechanics and molecular mechanics approach is performed to investigate the nucleophilic substitution reactions of CN + CHX (X = F, Cl, Br, and I) by the N-side attack in aqueous solution. The water molecules are treated microscopically using an explicit SPC/E model, and the potentials of mean force are characterized by both the DFT and CCSD(T) levels of theory for the solute. Calculations demonstrate that the shielding effect of the solvent reduces the nucleophile-substrate and substrate-leaving group interactions in solution, leading to stationary point structures that are quite different from those in the gas phase.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
2D-layered materials are recognized as up-and-coming candidates to overcome the intrinsic physical limitation of silicon-based devices. Herein, the coexistence of positive persistent photoconductivity (PPPC) and negative persistent photoconductivity (NPPC) in SnSe thin films prepared by pulsed laser deposition provides an excellent avenue for engineering novel devices. It is determined that surface oxygen is co-regulated by physisorption and chemisorption, and the NPPC is attributed to the photo-controllable oxygen desorption behavior.
View Article and Find Full Text PDFJ Med Chem
December 2024
Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Radiotracers provide molecular- and cellular-level information in a noninvasive manner and have become important tools for precision medicine. In particular, the successful clinical application of radioligand therapeutic (RLT) has further strengthened the role of nuclear medicine in clinical treatment. The complicated microenvironment of the lesion has rendered traditional single-targeted radiopharmaceuticals incapable of fully meeting the requirements.
View Article and Find Full Text PDFLight Sci Appl
December 2024
Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Room temperature femtowatt sensitivity remains a sought-after attribute, even among commercial inorganic infrared (IR) photodetectors (PDs). While organic IR PDs are poised to emerge as a pivotal sensor technology in the forthcoming Fourth-Generation Industrial Era, their performance lags behind that of their inorganic counterparts. This discrepancy primarily stems from poor external quantum efficiencies (EQE), driven by inadequate exciton dissociation (high exciton binding energy) within organic IR materials, exacerbated by pronounced non-radiative recombination at narrow bandgaps.
View Article and Find Full Text PDFTalanta
April 2025
College of Chemistry, Jilin University, Changchun, 130012, PR China. Electronic address:
Nano Lett
December 2024
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China.
The endohedral fullerene LuN@C was examined using in situ high-pressure measurements, which included electrical transport, Fourier-transform infrared spectroscopy, and Raman spectroscopy, in combination with theoretical calculations. LuN@C was found to undergo a reversible n- to p-type conversion at ∼8.9 GPa.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.
Dense hydrous magnesium silicate MgSiO_{4}H_{2} is widely regarded as a primary water carrier into the deep Earth. However, the stability fields of MgSiO_{4}H_{2} based on the prevailing structure model are narrower than experimental results at relevant pressure and temperature (P-T) conditions, casting doubts about this prominent mineral as a water carrier into the great depths of the Earth. Here, we report on an advanced structure search that identifies two new crystal structures, denoted as α- and β-MgSiO_{4}H_{2}, that are stable over unprecedentedly wide P-T conditions of 17-68 GPa and up to 1860 K, covering the entire experimentally determined range.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Generally, the dissipationless Hall effect in solids requires time-reversal symmetry breaking (TRSB), where TRSB induced by external magnetic field results in the ordinary Hall effect, while TRSB caused by spontaneous magnetization gives rise to the anomalous Hall effect (AHE) which scales with the net magnetization. The AHE is therefore not expected in antiferromagnets with vanishing small magnetization. However, large AHE was recently observed in certain antiferromagnets with noncollinear spin structure and nonvanishing Berry curvature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Antiferroelectric (AFE) ceramics are competitive energy storage candidates for advanced high-power devices. However, the poor recoverable energy density and efficiency are challenging and severely hinder their applications. Here, superior energy storage performance is obtained in Bi-, Sr-, and Ta-codoped AgNbO-based ceramics.
View Article and Find Full Text PDFEClinicalMedicine
December 2024
Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350116, PR China.
Background: A singular reliable modality for early distinguishing perianal fistulizing Crohn's disease (PFCD) from cryptoglandular fistula (CGF) is currently lacking. We aimed to develop and validate an MRI-based deep learning classifier to effectively discriminate between them.
Methods: The present study retrospectively enrolled 1054 patients with PFCD or CGF from three Chinese tertiary referral hospitals between January 1, 2015, and December 31, 2021.
Small
December 2024
Institute of Micronano Devices & Solar Cells, College of Physics & Information Engineering, Fuzhou University, Fuzhou, 350108, Peoples Republic of China.
Antimony selenosulfide (Sb(S,Se)) solar cells have achieved an efficiency of over 10.0%. However, the uncontrollable hydrothermal process makes preparing high-quality Sb(S,Se) thin films a bottleneck for efficient Sb(S,Se) solar cell.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, 510632, PR China; Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, PR China. Electronic address:
Surface plasmon resonance (SPR) optical fiber sensors are appealing for biomolecular detection due to their inherent characteristics such as flexibility, real-time performance, and high sensitivity. Concurrently, incorporating SPR sensors into wearable devices has emerged as a significant strategy. However, the majority of traditional SPR optical fiber sensors utilize spectrometers for optical readout, which leads to a relatively bulky overall size of the sensing system.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
College of Materials Science and Chemical Engineering, Harbin 150001, PR China; College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, PR China. Electronic address:
The electrochemical carbon dioxide reduction reaction (CORR) to formic acid or formate is a highly effective approach for achieving carbon neutrality. However, multiple proton-coupling-electronic processes and the instability of the catalysts caused by surface poisoning greatly limit the overall efficiency of CORR to formate. Here, a facile method was developed to anchor ∼2.
View Article and Find Full Text PDFDalton Trans
December 2024
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
Correction for 'Highly efficient yellow emission and abnormal thermal quenching in Mn-doped RbCdCl' by Dayu Huang , , 2023, , 5715-5723, https://doi.org/10.1039/D3DT00453H.
View Article and Find Full Text PDFNanophotonics
January 2024
State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Nanophotonics
January 2024
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Optical skyrmions, which are topological quasi-particles with nontrivial electromagnetic textures, have garnered escalating research interest recently for their potential in diverse applications. In this paper, we present a method for generating tightly focused optical skyrmion and meron topologies formed by electric-field vectors under 4-focusing system, where both the topology types (including Néel-, Bloch-, intermediate- and anti-skyrmion/meron) and the normal direction of the two-dimensional topology projection plane can be tailored at will. By utilizing time-reversal techniques, we analytically derive the radiation pattern of a multiple concentric-ring array of dipoles (MCAD) to obtain the required illumination fields on the pupil planes of the two high numerical aperture lenses.
View Article and Find Full Text PDFNanophotonics
August 2024
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China.
Nanophotonics
August 2024
College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
We demonstrate a technique for flexibly controlling subwavelength focusing and scanning, by using the Fourier translation property of a topology-preserved flat lens. The Fourier transform property of the flat lens enables converting an initial phase shift of light into a spatial displacement of its focus. The flat lens used in the technique exhibits a numerical aperture of 0.
View Article and Find Full Text PDFNanophotonics
August 2024
Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
Interference between the electric and magnetic dipole-induced in Mie nanostructures has been widely demonstrated to tailor the scattering field, which was commonly used in optical nano-antennas, filters, and routers. The dynamic control of scattering fields based on dielectric nanostructures is interesting for fundamental research and important for practical applications. Here, it is shown theoretically that the amplitude of the electric and magnetic dipoles induced in a vanadium dioxide nanosphere can be manipulated by using laser-induced metal-insulator transitions, and it is experimentally demonstrated that the directional scattering can be controlled by simply varying the irradiances of the excitation laser.
View Article and Find Full Text PDFSmall Methods
December 2024
Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
MnO is a promising candidate for aqueous zinc ion batteries (ZIBs) due to its high theoretical capacity (468.5 mAh g) and environmental friendliness, while its practical application is hindered by slow kinetics and rapid capacity degradation. Herein, a porous MnO with segregated and interlaced carbon framework (HCF-MnO) is introduced.
View Article and Find Full Text PDFAdv Mater
January 2025
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
Despite the great success in deploying metal-organic frameworks (MOFs) as efficient electrocatalysts, the low adoption of operando methods hinders the understanding of underlying mechanism. By leveraging the subtle refractive index evolution, including both the real and the imaginary parts, an entirely new concept of a lab-on-fiber operando method and its feasibility for "pristine-immersion-operando-post analysis" of electrocatalyts are demonstrated. Concurrent collection of absorption spectra and surface plasmon resonance is achieved by engineering fiber-optic waveguides to simultaneously induce guided light attenuation and plasmonic coupling.
View Article and Find Full Text PDF