808 results match your criteria: "College of mechanical and Electronic Engineering[Affiliation]"

Design of Dielectric Elastomer Actuator and Its Application in Flexible Gripper.

Micromachines (Basel)

January 2025

Zhejiang Sunny Optical Company, Yuyao 315400, China.

Dielectric elastomer actuators (DEAs) are difficult to apply to flexible grippers due to their small deformation range and low output force. Hence, a DEA with a large bending deformation range and output force was designed, and a corresponding flexible gripper was developed to realize the function of grasping objects of different shapes. The relationship between the pre-stretch ratio and DEA deformation degree was tested by experiments.

View Article and Find Full Text PDF

Tomato, as the vegetable queen, is cultivated worldwide due to its rich nutrient content and unique flavor. Nondestructive technology provides efficient and noninvasive solutions for the quality assessment of tomatoes. However, processing the substantial datasets to achieve a robust model and enhance detection performance for nondestructive technology is a great challenge until deep learning is developed.

View Article and Find Full Text PDF
Article Synopsis
  • Transition metal oxides, like MnO, show great promise as anodes for flexible electrodes but face challenges such as low conductivity and poor cycling performance.
  • A new method called "spontaneous complexation and exfoliation" creates flexible thin-film electrodes using MnO nanocrystals and reduced graphene oxide (rGO), improving their mechanical flexibility and lithium-ion storage capacity.
  • The resulting flexible anodes deliver around 1220 mAh/g over 1000 cycles with high-rate capacity, while maintaining performance even under bending, highlighting their potential for advanced energy storage solutions.
View Article and Find Full Text PDF

Inkjet printing techniques are often used for bioprinting purposes because of their excellent printing characteristics, such as high cell viability and low apoptotic rate, contactless, commercial availability, and low cost. However, they face some disadvantages, such as the use of bioinks of low viscosity, cell damage due to shear stress caused by drop ejection and jetting velocity, as well as a narrow range of available bioinks that still challenge the inkjet printing technology. New technological solutions are required to overcome these obstacles.

View Article and Find Full Text PDF

This work pioneered an innovative visible light-powered, self-cascading peroxide antimicrobial packaging system (RPFe-CS), featuring a photodynamic enhancement effect achieved through the demand-oriented design of riboflavin sodium phosphate and Fe coordination complexes (RPFe) fillers with photodynamic and peroxidase activities, and the ingenious selection of slightly acidic chitosan (CS) film matrix. In this system, the photo-responsive properties of RPFe particles not only generate the •O, •OH, and O required for photodynamic sterilization, but also the produced HO serves as a necessary substrate for peroxidase to exert its bactericidal effect, endowing the packaging system with a "self-production and self-marketing" cascade process. The RPFe-CS film achieved efficient eradication to bacteria and fungi reaching up to 99.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) plays an important role to respond in the defence against damage when tomato leaves are under different types of adversity stresses. This work employed microhyperspectral imaging (MHSI) and visible near-infrared (Vis-NIR) hyperspectral imaging (HSI) technologies to predict tomato leaf SOD activity. The macroscopic model of SOD activity in tomato leaves was constructed using the convolutional neural network in conjunction with the long and short-term temporal memory (CNN-LSTM) technique.

View Article and Find Full Text PDF

Impurity detection of premium green tea based on improved lightweight deep learning model.

Food Res Int

January 2025

Tea Research Institute of Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Mechanical and Electronic Engineering, Shihezi University, Shihezi 832000, China. Electronic address:

Tea may be mixed with impurities during picking and processing, which can lower their quality. At present, the sorting of impurities in premium green tea mainly relies on manual labor, which is inefficient. In response to the technical challenges in this industry, this article uses deep learning technology to detect impurities in premium green tea.

View Article and Find Full Text PDF

The efficient separation of bioactive components from Eucommia ulmoides Oliver using membrane filtration technology and its mechanisms in preventing alcoholic liver disease.

Carbohydr Polym

March 2025

College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; College of Forestry, Northwest A&F University, Yangling 712100, China; Western Scientific Observation and Experiment Station for Development and Utilization of Rural Renewable Energy, M.O.A, Northwest Agriculture & Forestry University, Yangling 712100, China. Electronic address:

The efficient extraction and purification of active components from Eucommia ulmoides Oliver (EUO) are crucial for their utilization. The structure and properties of the prepared EUO leaf polysaccharides (ELPs) and extractum (ELE) were comprehensively characterized in this study, and the intervention mechanism of the EUO polysaccharides and extractum in alcoholic liver disease (ALD) were investigated. The yield of EUO extractum was 24.

View Article and Find Full Text PDF

To improve the light environment of asymmetric large-span externally insulated plastic greenhouses, a solar radiation model that considers the projection path equations of the insulation quilts and validated the model was established. The model was employed to investigate the impact of different heights, spans, and north lighting projection lengths on the greenhouses' light environment. The results revealed that ground radiation interception, a key component of winter lighting, was most influenced by height, followed by span, and least influenced by the projection length of the north lighting roof.

View Article and Find Full Text PDF

The structural adhesive bonding of aluminum is widely used in the aircraft and automotive industries. The surface preparation of aluminum prior to adhesive bonding plays a significant role in improving the bonding strength. Surface cleanliness, surface roughness, and surface chemistry can be controlled, primarily, by proper surface treatment methods.

View Article and Find Full Text PDF

Rapid and accurate detection of protein content is essential for ensuring the quality of maize. Near-infrared spectroscopy (NIR) technology faces limitations due to surface effects and sample homogeneity issues when measuring the protein content of whole maize grains. Focusing on maize grain powder can significantly improve the quality of data and the accuracy of model predictions.

View Article and Find Full Text PDF

Rapid online detection of broken rate can effectively guide maize harvest with minimal damage to prevent kernel fungal damage. The broken rate prediction model based on machine vision and machine learning algorithms is proposed in this manuscript. A new dataset of high moisture content maize kernel phenotypic features was constructed by extracting seven features (geometric and shape features).

View Article and Find Full Text PDF

Due to the small and irregular shapes of vegetable seeds, modeling them is challenging, and the imprecision of physical parameters hinders the performance of vegetable seeders, impeding simulation development. In this study, seeds of cucumber, pepper, and tomato were seen as examples. A 3D point cloud reconstruction method based on Structure-from-Motion Multi-View Stereo (SfM-MVS) was employed to accurately extract 3D models of small and irregularly shaped seeds.

View Article and Find Full Text PDF

Beyond visible: giant bulk photovoltaic effect for broadband neuromodulation.

Light Sci Appl

January 2025

QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Espoo, Finland.

The giant bulk photovoltaic effect in tellurene nanomaterials has been harnessed to enable broadband infrared neuromodulation, expanding the potential for safe, non-invasive neural stimulation and highlighting the importance of material innovation in advancing infrared photonic applications.

View Article and Find Full Text PDF

Radio frequency heating assisted Maillard reaction of whey protein - gum Arabic: Improving structural and unlocking functional properties.

Int J Biol Macromol

December 2024

College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA; Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China. Electronic address:

Article Synopsis
  • Whey protein is a nutritious animal protein, but its usefulness in food systems is limited by its sensitivity to environmental factors.
  • The study explores using radio frequency heating to couple whey protein with gum Arabic, significantly improving their functional properties compared to traditional water bath heating.
  • Results showed that the RF heating increased the glycosylation degree, enhancing emulsifying, foaming, and antioxidant qualities of the protein-gum conjugates.
View Article and Find Full Text PDF
Article Synopsis
  • Polymers are being studied as eco-friendly alternatives to fluorinated foam extinguishing agents, focusing on how they affect the performance of non-fluorinated foams.
  • The research examines the impact of xanthan gum, sodium carboxymethyl cellulose, and gelatin on various properties such as viscosity, conductivity, and foam stability of a specific siloxane-based mixture.
  • Results indicate that while the polymers increased viscosity and conductivity, they also decreased foamability, with gelatin enhancing surface activity and contributing to prolonged drainage times and film stability.
View Article and Find Full Text PDF

Determination and visualization of moisture content in Camellia oleifera seeds rapidly based on hyperspectral imaging combined with deep learning.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Moisture content (MC) is crucial for the storage, transportation, and processing of Camellia oleifera seeds. The purpose of this study was to investigate the feasibility for detecting MC in Camellia oleifera seeds using visible near-infrared hyperspectral imaging (VNIR-HSI) (374.98 ∼ 1038.

View Article and Find Full Text PDF

The novel coronavirus (COVID-19) has affected more than two million people of the world, and far social distancing and segregated lifestyle have to be adopted as a common solution in recent years. To solve the problem of sanitation control and epidemic prevention in public places, in this paper, an intelligent disinfection control system based on the STM32 single-chip microprocessor was designed to realize intelligent closed-loop disinfection in local public places such as public toilets. The proposed system comprises seven modules: image acquisition, spraying control, disinfectant liquid level control, access control, voice broadcast, system display, and data storage.

View Article and Find Full Text PDF

In robotic-assisted laminectomy decompression, stable and precise vertebral plate cutting remains challenging due to manual dependency and the absence of adaptive skill-learning mechanisms. This paper presents an advanced robotic vertebral plate-cutting system that leverages patient-specific anatomical variations and replicates the surgeon's cutting technique through a trajectory parameter prediction model. A spatial mapping relationship between artificial and patient vertebrae is first established, enabling the robot to mimic surgeon-defined trajectories with high accuracy.

View Article and Find Full Text PDF

Discrimination of leaf diseases in Maize/Soybean intercropping system based on hyperspectral imaging.

Front Plant Sci

December 2024

College of Agronomy, College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, Shandong, China.

In order to achieve precise discrimination of leaf diseases in the Maize/Soybean intercropping system, i.e. leaf spot disease, rust disease, mixed leaf diseases, this study utilized hyperspectral imaging and deep learning algorithms for the classification of diseased leaves of maize and soybean.

View Article and Find Full Text PDF

To overcome the problems of the low signal-to-noise ratio and poor performance of wood ultrasonic images caused by ring-down vibrations during the ultrasonic quality detection of wood, a composite pulse excitation technique using a wood air-coupled ultrasonic detection system is proposed. Through a mathematical analysis of the output of the ultrasonic transducer, the conditions necessary for implementing composite pulse excitation were analyzed and established, and its feasibility was verified through COMSOL simulations. Firstly, wood samples with knot and pit defects were used as experimental samples.

View Article and Find Full Text PDF

Evaluation and correction methods for geometric errors of hydrostatic thrust bearings.

Sci Rep

December 2024

College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao, 266590, China.

The value and direction angle of the perpendicularity error of the thrust surface and bearing bush in hydrostatic thrust bearings directly affect the motion accuracy. In this paper, a rapid onsite measurement method and evaluation model for the value and direction angle of the perpendicularity error of the thrust surface and bearing bush in hydrostatic thrust bearings are presented. The method is validated by comparing experimental measurements with those obtained using a CMM.

View Article and Find Full Text PDF

Addressing the issues of inefficiency and severe environmental pollution associated with artificial and chemical methods in cotton growth regulation, this study introduces the high-voltage electrostatic field environmental control technology. It delves into the technology's macro- and microscopic impacts on cotton seedling growth and optimizes its operational parameters. At the macro level, the study examines the influence of adjusting the output voltage of the high-voltage electrostatic generator, the distance between the upper pole plate and the cotton leaf, and the action time of the electric field on seedling features above (plant height, ground diameter, and leaf area) and below ground (fresh weight and dry weight of roots).

View Article and Find Full Text PDF

Aiming to address the issue of stored grain pests easily breeding during the process of dried fruits in Xinjiang, this study proposes a method and a device for killing raisin parasitic eggs based on a high-voltage pulsed electric field. A one-way test and a Box-Behnken central combination test were conducted to investigate the effects of high-voltage pulsed electric field strength and frequency on the unhatched rate and larval survival rate of Plodia interpunctella eggs on raisin surfaces. The experimental results were qualitatively and quantitatively analyzed using biooptical microscope observation and incubation at constant temperature and humidity post-treatment.

View Article and Find Full Text PDF

Multi-scale heterogeneous composite elastomer absorbers synergistically enhanced by CoNi nanospheres and carbon nanotubes.

J Colloid Interface Sci

March 2025

Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:

The advancement of high-performance absorbers is essential for applications in electromagnetic wave absorption (EWA) and stealth technologies. To enhance EWA performances, it is imperative to employ advanced design strategies that incorporate heterogeneous interfaces and multi-scale structures. In this study, we developed a composite elastomer demonstrating exceptional EWA characteristics using a two-step process involving liquid-phase reduction followed by thermal curing.

View Article and Find Full Text PDF