27,090 results match your criteria: "College of Water Resources & Civil Engineering China Agricultural University Beijing China.[Affiliation]"

Optimizing survey conditions for Burmese python detection and removal using community science data.

Sci Rep

January 2025

Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Ave, Davie, FL, 33314, USA.

Burmese pythons (Python bivittatus) have demonstrated prolific spread and low detectability within their invasive range in Florida, USA. Consequently, programs exist which incentivize contractors to remove pythons. While surveying, contractors collect data on search effort and python captures.

View Article and Find Full Text PDF

Natural biopolymer-based liquid mulching films (LMF) have received widespread attention, whereas the fragile structure and limited functionality have severely restricted their application. Herein, polydopamine-coated montmorillonite micro/nanoparticles enhanced pectin-based sprayable multifunctional liquid mulching films (P-MMT@PDA LMF) were prepared. Dopamine has abundant active sites, and its self-polymerization onto the surface of MMT improves the compatibility of MMT with pectin chains, facilitates the homogeneous dispersion of MMT@PDA in pectin polymers, and makes them more tightly entangled through hydrogen bonding.

View Article and Find Full Text PDF

Because coal seam mining with high geostress and high gas pressure is prone to coal-rock-gas compound dynamic disasters, a disaster energy equation considering the influence of roof elastic energy is established, and a disaster energy criterion considering the influence of roof elastic energy is derived and introduced into COMSOL software to conduct numerical simulations of coal seam mining under different geostress and gas pressures. The study revealed that the increase of ground stress reduces the gas pressure required for disaster occurrence. When the gas pressure reaches a certain value, the disaster will occur even if the ground stress is very small.

View Article and Find Full Text PDF

A Global Relationship Between Genome Size and Encoded Carbon Metabolic Strategies of Soil Bacteria.

Ecol Lett

January 2025

State Key Laboratory of Crop Stress Biology in Arid Areas, Shanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.

Microbial traits are critical for carbon sequestration and degradation in terrestrial ecosystems. Yet, our understanding of the relationship between carbon metabolic strategies and genomic traits like genome size remains limited. To address this knowledge gap, we conducted a global-scale meta-analysis of 2650 genomes, integrated whole-genome sequencing data, and performed a continental-scale metagenomic field study.

View Article and Find Full Text PDF

Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.

View Article and Find Full Text PDF

Manganese Intercalation Enabling High-Performance Aqueous Fe-VO Batteries.

ACS Appl Mater Interfaces

January 2025

College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China.

The aqueous iron ion batteries (AIIBs) are an attractive option for large-scale energy storage applications. However, the inadequate plating and stripping of Fe ions underscore the need to explore more suitable cathode materials. Herein, we optimize the structure of tunnel-like VO nanosheets by introducing Mn ion intercalation as a cathode material to enhance their performance in AIIBs.

View Article and Find Full Text PDF

Facile and green fabrication of biodegradable aerogel from chitosan derivatives/modified gelatin as absorbent for oil removal.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China. Electronic address:

Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed.

View Article and Find Full Text PDF

Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.

View Article and Find Full Text PDF

Spatial distribution patterns, hotspots of contaminants of emerging concern and driving factors in a river network of Xizang Plateau.

Environ Res

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China. Electronic address:

This study encompasses the explication of systematic spatial distribution patterns and identification of hotspots of contaminants of emerging concern (CECs) across the network of rivers, including Yarlung Tsangpo River and its tributaries in Xizang Plateau. A total of 16 CECs were detected in wide range of frequencies and concentrations ranging from below limit of detection (BLD) - 163.13 ng/L across the river network, indicating widespread spatial heterogeneity.

View Article and Find Full Text PDF

Seawater intrusion and human activities have significantly impacted coastal groundwater quality in many regions worldwide. This study systematically assessed groundwater chemistry, its suitability for drinking and irrigation (sample size, n = 3034), and exposure risks (n = 2863) across three key sub-regions of the Bohai Sea area: Bohai Bay, Liaodong Bay, and Laizhou Bay. Significant seasonal variations observed in groundwater chemistry at different depths in Bohai Bay region, with severe contamination from salinity-alkalinity and nitrogen-fluoride.

View Article and Find Full Text PDF

Microtopography-induced hydrological heterogeneity promotes the co-assembly of vascular plant and biocrust communities, providing synergistic protective functions for the Great Wall.

Sci Total Environ

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

The Great Wall in China, constructed from rammed earth, faces threats from natural erosion. Vascular plants and biocrusts have enhanced the stability of the Great Wall through various mechanisms; however, understanding of the colonization processes of vascular plants and biocrusts on the wall, as well as their protective mechanisms, remains limited. This study investigated the vascular plant communities, biocrusts, soil moisture content, soil properties, aggregate mechanical stability, aggregate water stability, and soil erodibility factors across seven fine-scale microtopographies of the Great Wall (lower, middle, and upper zones on the east and west faces, as well as the wall crest).

View Article and Find Full Text PDF

Differential impacts of water diversion and environmental factors on bacterial, archaeal, and fungal communities in the eastern route of the South-to-North water diversion project.

Environ Int

January 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871 China. Electronic address:

Water diversion projects effectively mitigate the uneven distribution of water resources but can also influence aquatic biodiversity and ecosystem functions. Despite their importance, the impacts of such projects on multi-domain microbial community dynamics and the underlying mechanisms remain poorly understood. Utilizing high-throughput sequencing, we investigated bacterial, archaeal, and fungal community dynamics along the eastern route of the South-to-North water diversion project during both non-water diversion period (NWDP) and water diversion period (WDP).

View Article and Find Full Text PDF

Decipher syntrophies and adaptive response towards enhancing conversion of propionate to methane under psychrophilic condition.

Water Res

January 2025

Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.

View Article and Find Full Text PDF

Occurrence, bioaccumulation, and ecological and health risks of Cd, Sn, Hg, and Pb compounds in shrimp and fish from aquaculture ponds.

J Hazard Mater

January 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Aquaculture organisms may accumulate metals to induce health risks. Compared with the focus on total contents, chemical-specific risk assessment makes reasonable but is rare. Herein, we elucidated occurrence of twelve metal compounds in shrimp and fish (edible muscle, one of major metal-containing and generally targeted organs), water, sediment, and feedstuff from two aquaculture ponds in Zhejiang Province (one of the major aquatic production and consumption areas).

View Article and Find Full Text PDF

Emulsion Polymerization of Styrene to Polystyrene Nanoparticles with Self-Emulsifying Nanodroplets as Nucleus.

Langmuir

January 2025

Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The mechanism of the emulsion polymerization of styrene to polystyrene nanoparticles (PSNPs) remains a subject of debate. Herein, a series of reaction parameters with different surfactant concentrations, monomer contents, temperatures, and equilibration times were investigated to understand the formation mechanism of PSNPs, which demonstrate a correlation between the properties of PSNPs and the mesostructure of the premix. Cooling the model systems with self-emulsifying nanodroplets (SENDs) in the early reaction stages resulted in the hollow polystyrene spheres (H-PSSs), ruptured PSNPs, and dandelion-like PSNPs, further indicating that the oil nanodroplets are the key sites for the formation of PSNPs.

View Article and Find Full Text PDF

In order to address many issues, such as the inconsistent and unreliable seeding process in traditional mechanical garlic seed metering systems (SMS), as well as the lack of ability to monitor the effectiveness of the seeding, a highly accurate electric-driven metering system (EDMS) was developed and created specifically for garlic seed planters. This study provided a description of the overall structure and functioning principle, as well as an analysis of the mechanism for smooth transit and delivery. A combination of an infrared (IR) sensor, Arduino Mega board, stepper motor, speed sensor, and a Wi-Fi module was employed to operate the EDMS, as well as monitor and count the quantity of garlic seeds during the planting process and determine the qualified rate (QR) and missing rate (MR).

View Article and Find Full Text PDF

Passive earth pressure analysis considering hydraulic and mechanical hysteresis for unsaturated soil.

PLoS One

January 2025

Water Resources Engineering Department, College of Engineering, Salahaddin University, Erbil, Iraq.

This paper addresses the mechanical characteristics of a passive earth pressure problem taking into account water retention curve (SWRC) hysteresis. Both hydraulic (drying and wetting cycles) and mechanical hysteresis were considered. Parametric studies were carried out at various air entry values (AEV = 5-30 kPa), different wall frictions (δ = 0, 0.

View Article and Find Full Text PDF

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Large-scale and long-term wildlife research and monitoring using camera traps: a continental synthesis.

Biol Rev Camb Philos Soc

January 2025

Wildlife Observatory of Australia (WildObs), Queensland Cyber Infrastructure Foundation (QCIF), Brisbane, Queensland, 4072, Australia.

Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012-2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (i) synthesised information from a literature review; (ii) conducted an online questionnaire of 132 professionals; (iii) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources.

View Article and Find Full Text PDF

With the growing bourbon industry in the southeastern U.S. leading to increased production of liquid distillery byproducts, there is a pressing need to explore sustainable uses for whole stillage [containing residual grain (corn, rye, malted barley) and liquid after ethanol separation] in livestock nutrition.

View Article and Find Full Text PDF

Green coal and lubricant via hydrogen-free hydrothermal liquefaction of biomass.

Nat Commun

January 2025

Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China.

Biocrude derived from biomass via hydrothermal liquefaction (HTL) is a sustainable substitute for petroleum to obtain energy and biochemicals. Upgrading biocrude inevitably faces the trade-off between consuming large amounts of hydrogen via hydrotreating and high yield of solid residue without additional hydrogen. In this work, we report a non-hydrogenated refinery paradigm for nearly complete valorization (~90%), via co-generating green coal and bio-lubricant.

View Article and Find Full Text PDF

The microbial mechanism of maize residue decomposition under different temperature and moisture regimes in a Solonchak.

Sci Rep

January 2025

Shaanxi Province Key Laboratory of Bio-resources, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China.

Soil salinization becomes serious under climate change and human activities. Although the residue decomposition contributes lots to soil carbon storage and fertility, the decomposition process and microbial mechanisms on saline-alkali soils are still vague facing climate change. We measured the mass loss of residue (0, 4, 8, 15, 30, 60 and 90 days), CO emission (every two days), and the microbial community structure (0, 4, 15 and 90 days) by using the litter bag method, gas chromatography and high-throughput sequencing technology during the residue decomposition (90 days) in a saline-alkali soil from the Tarim River Basin, China under various temperatures (15 °C, 25 °C, 35 °C) and soil moisture levels (20%, 40%, 60% water holding capacity).

View Article and Find Full Text PDF

Electrochromic materials were discovered in the 1960s when scientists observed reversible changes between the light and dark states in WO thin films under different voltages. Since then, researchers have identified various electrochromic material systems, including transition metal oxides, polymer materials, and small molecules. However, the electrochromic phenomenon has rarely been observed in non-metallic elemental substances.

View Article and Find Full Text PDF

Soil water sustains terrestrial life, yet its fate is uncertain under a changing climate. We conducted a deuterium labeling experiment to determine whether elevated atmospheric carbon dioxide (CO), warming, and drought impact soil water storage and transport in a temperate grassland. Elevated CO created a wetter rootzone compared with ambient conditions, whereas warming decreased soil moisture.

View Article and Find Full Text PDF

Inland river runoff variability is pivotal for maintaining regional ecological stability. Daily flow forecasting in arid regions is crucial in understanding water body ecological processes and promoting healthy river ecology. Precise daily runoff forecasting serves as a cornerstone for ecological evaluation, management, and decision-making.

View Article and Find Full Text PDF