3 results match your criteria: "College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China.[Affiliation]"

Combined phototherapy and immunotherapy demonstrates strong potential in the treatment of metastatic cancers. An upconversion nanoparticle (UCNP) based antigen-capturing nanoplatform is designed to synergize phototherapies and immunotherapy. In particular, this nanoplatform is constructed via self-assembly of DSPE-PEG-maleimide and indocyanine green (ICG) onto UCNPs, followed by loading of the photosensitizer rose bengal (RB).

View Article and Find Full Text PDF

Phototunable biomaterial-based resistive memory devices and understanding of their underlying switching mechanisms may pave a way toward new paradigm of smart and green electronics. Here, resistive switching behavior of photonic biomemory based on a novel structure of metal anode/carbon dots (CDs)-silk protein/indium tin oxide is systematically investigated, with Al, Au, and Ag anodes as case studies. The charge trapping/detrapping and metal filaments formation/rupture are observed by in situ Kelvin probe force microscopy investigations and scanning electron microscopy and energy-dispersive spectroscopy microanalysis, which demonstrates that the resistive switching behavior of Al, Au anode-based device are related to the space-charge-limited-conduction, while electrochemical metallization is the main mechanism for resistive transitions of Ag anode-based devices.

View Article and Find Full Text PDF

is demonstrated with tunable characteristics, multilevel data storage, and ultrahigh ON/OFF ratio. Effects of the black phosphorous quantum dots layer thickness and the compliance current setting on resistive switching behavior are systematically studied. Our devices can yield a series of SET voltages and current levels, hence having the potential for practical applications in the flexible electronics industry.

View Article and Find Full Text PDF