2,289 results match your criteria: "College of Mechanical and Electrical Engineering[Affiliation]"

Versatile adhesive skin enhances robotic interactions with the environment.

Sci Adv

January 2025

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Electronic skins endow robots with sensory functions but often lack the multifunctionality of natural skin, such as switchable adhesion. Current smart adhesives based on elastomers have limited adhesion tunability, which hinders their effective use for both carrying heavy loads and performing dexterous manipulations. Here, we report a versatile, one-size-fits-all robotic adhesive skin using shape memory polymers with tunable rubber-to-glass phase transitions.

View Article and Find Full Text PDF

Low-Impedance Hybrid Carbon Structures on SiO: A Sequential Gas-Phase Coating Approach.

Small Methods

January 2025

BCMaterials, Basque Centre for Materials, Applications and Nanostructures; UPV/EHU Science Park, Leioa, 48940, Spain.

Carbon coating on SiO surface is crucial for enhancing initial Coulombic efficiency (ICE) and cycling performance in batteries, while also buffering volume expansion. Despite its market prevalence, the effects of the carbon layer's quality and structure on the electrochemical properties of SiO remain underexplored. This study compares carbon layers produced via gas-phase and solid-phase coating methods, introducing an innovative technique that sequentially uses two gases to develop a low-impedance hybrid carbon structure.

View Article and Find Full Text PDF

Green coal and lubricant via hydrogen-free hydrothermal liquefaction of biomass.

Nat Commun

January 2025

Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China.

Biocrude derived from biomass via hydrothermal liquefaction (HTL) is a sustainable substitute for petroleum to obtain energy and biochemicals. Upgrading biocrude inevitably faces the trade-off between consuming large amounts of hydrogen via hydrotreating and high yield of solid residue without additional hydrogen. In this work, we report a non-hydrogenated refinery paradigm for nearly complete valorization (~90%), via co-generating green coal and bio-lubricant.

View Article and Find Full Text PDF

Inspired by the adhesion differences on the surfaces of fresh and dried rose petals, a rose bionic self-cleaning fog collector (RBSC) was designed and prepared to realize a self-driven fog harvesting function. The droplet detachment iteration rate was revealed by the regulating mechanism of the surface adhesion force of the RBSC and the influence of bionic texture parameters, as demonstrated through the fog harvesting experiment and droplet detachment failure analysis. Through the surface adhesion force regulation, the probability of droplet dissipation with the airflow is reduced by increasing the falling droplets' mass, and the single surface fog capture efficiency is up to 740 mg cm h.

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.

View Article and Find Full Text PDF

Study on the preparation and design of chenille/polyester integrated yarns and its acoustic properties.

Sci Rep

January 2025

Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China.

With the rapid development of industrialization and urbanization, the impact of noise on people's health has become an increasingly serious issue, but it is still a challenge for the reducing the noise due to its complex property. Textiles with many loose porous structures have gained much significant attentions, thus chenille yarns with plush fibers on the surface, and polyester monofilament were chosen to fabricate the integrated knitting yarns, and their fundamental and mechanical properties were fully evaluated. The results showed that the diameter and braiding angle of the blended yarns decreased with the increase of pitch, resulting in a linear correlation of R > 0.

View Article and Find Full Text PDF

Improving Corrosion Resistance of Zircaloy-4 via High-Current Pulsed Electron Beam Surface Irradiation.

Materials (Basel)

December 2024

Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.

Zircaloy-4 is extensively used in nuclear reactors as fuel element cladding and core structural material. However, the safety concerns post-Fukushima underscore the need for further enhancing its high-temperature and high-pressure water-side corrosion resistance. Therefore, this study aimed to investigate the effects of high-current pulsed electron beam (HCPEB) irradiation on the microstructures and corrosion resistance of Zircaloy-4, with the goal of improving its performance in nuclear applications.

View Article and Find Full Text PDF

Synergetic Contributions of High Quenching Concentration and Tuned Square Antiprism Geometry Boosting Far-Red Emission of Eu with Near-Unit Efficiency.

Adv Sci (Weinh)

January 2025

Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China.

Far-red phosphors have emerged as a desirable research hotspot owing to their critical role in promoting plant growth. Especially, Eu ions typically present the D→F (J = 0, 1, 2, 3, 4) transitions, which overlap with the far-red light required for plant photosynthesis. However, achieving high-efficiency far-red emission of Eu remains challenging due to weak D→F transition and concentration quenching.

View Article and Find Full Text PDF

Fiber Optic Micro-Hole Salinity Sensor Based on Femtosecond Laser Processing.

Nanomaterials (Basel)

January 2025

School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China.

This study presents a novel reflective fiber Fabry-Perot (F-P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum.

View Article and Find Full Text PDF

Automated large-scale farmland preparation operations face significant challenges related to path planning efficiency and uniformity in resource allocation. To improve agricultural production efficiency and reduce operational costs, an enhanced method for planning land preparation paths is proposed. In the initial stage, unmanned aerial vehicles (UAVs) are employed to collect data from the field, which is then used to construct accurate farm models.

View Article and Find Full Text PDF

The quality and safety of tea food production is of paramount importance. In traditional processing techniques, there is a risk of small foreign objects being mixed into Pu-erh sun-dried green tea, which directly affects the quality and safety of the food. To rapidly detect and accurately identify these small foreign objects in Pu-erh sun-dried green tea, this study proposes an improved YOLOv8 network model for foreign object detection.

View Article and Find Full Text PDF

Investigating the selection of corresponding support methods for tunnel lining structures with different burial depths under landslide loads has strong practical significance. This paper analyzes the influence of anti-slide piles on the lining support of tunnels at different depths through scaling experiments combined with numerical simulation methods. The conclusions of this study are as follows: Under the same anti-slide pile cross-sectional conditions, when the tunnel is at a shallower depth (above the slip surface), due to the influence of the landslide load, a significant bias stress phenomenon occurs in the tunnel lining.

View Article and Find Full Text PDF

In order to study the movement characteristics of coal particles in the coal loading process of spiral drums, the spiral drum of a certain type of shearer was taken as the research object, and the intrinsic parameters of the materials were calibrated through the determination results of coal sample properties, the relevant parameters of coal particle adhesion were determined, and a discrete element model of spiral drum coal loading was established. The distribution of coal particle movement subsequent to the fracture of the coal wall was derived through simulation. By spatially dividing the envelope region of the spiral drum along the radial and axial directions, the number and velocity distribution of coal particles in different envelope regions were obtained.

View Article and Find Full Text PDF

Over the past 30 years, researchers have developed X-ray-focusing telescopes by employing the principle of total reflection in thin metal films. The Wolter-I focusing mirror with variable-curvature surfaces demands high precision. However, there has been limited investigation into the removal mechanisms for variable-curvature X-ray mandrels, which are crucial for achieving the desired surface roughness and form accuracy, especially in reducing mid-spatial frequency (MSF) errors.

View Article and Find Full Text PDF

TiO has broad prospects in reducing the safety risks posed by emerging pollutants in water environments. However, the high recombination rate of photogenerated carriers limits the activity and photon utilization efficiency of TiO. In this study, mesoporous TiO (m-TiO) and ultra-thin g-CN nanosheets were composited using a hydrothermal method, with the m-TiO tightly and uniformly wrapped by g-CN.

View Article and Find Full Text PDF

Effect of Asphalt Granulation on the Performance of Artificial Graphite Anode Materials for Lithium-Ion Batteries.

Materials (Basel)

December 2024

School of Physics and School of Materials Science and Engineering, Central South University, Changsha 410083, China.

In order to investigate the effects of the softening point, the addition ratio, and the median particle size (D50) of the asphalt on the performance of secondary particles of artificial graphite anode materials prepared by granulation, ten-kilogram orthogonal experiments were designed. D50 and powder orientation index (OI) value of the prepared secondary particles of artificial graphite anode materials were employed as evaluation index, and the results of the orthogonal experiments were subjected to polarity analysis, analysis of variance (ANOVA), and multiple linear regression analysis. It is demonstrated that the addition ratio of the asphalt exerts the most pronounced influence on D50 and powder OI value of secondary granular artificial graphite anode materials, followed by the softening point.

View Article and Find Full Text PDF

Effect of Laser Quenching on Wire-Powder Collaborative Arc Additive Manufacturing of Ti6Al4V-Cu Alloys with 2.4% and 7.9% Copper Content.

Materials (Basel)

December 2024

China International Science & Technology Cooperation Base for Laser Processing Robotics, College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China.

In this work, Ti6Al4V-Cu alloys with different Cu contents (2.4 and 7.9 wt.

View Article and Find Full Text PDF

The manufacturing precision of electro-hydraulic servo valve sleeves is critical to the performance and longevity of the valves. To ensure the service life of these valves, the valve sleeve is typically made from high-hardness martensitic stainless steel, which is considered a hard-to-cut material. Current honing methods often suffer from inefficiency and instability.

View Article and Find Full Text PDF

To enhance the physicochemical quality, drying efficiency, and nutrient retention of dried products, this study investigated the effects of ultrasonic pretreatment on the radio frequency vacuum (RFV) drying characteristics, microstructure, and retention of natural active substances in slices. The ultrasonic time, power, and frequency were considered as experimental factors. The results showed that, compared with conventional RFV drying, ultrasonic pretreatment reduced the drying time of slices by 20-60 min.

View Article and Find Full Text PDF

Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.

Natl Sci Rev

January 2025

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

The high thermopower of ionic thermoelectric (-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of -TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an of 0.

View Article and Find Full Text PDF
Article Synopsis
  • Earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells face efficiency challenges due to deep-level defects, which result in short carrier diffusion lengths, band tailing, and significant open-circuit voltage deficits.
  • A proposed solution involves a post-fabrication treatment where the CZTSSe film is dip-coated in dimethylformamide (DMF), a polar solvent that helps neutralize defects and improve film quality, leading to larger grain sizes.
  • As a result of this treatment, carrier diffusion length increased from 93 nm to 142 nm, reducing the VOC deficit by up to 289 mV and boosting the solar cell efficiency to 11.4%, showcasing the promise of DMF
View Article and Find Full Text PDF

Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.

View Article and Find Full Text PDF

Local corner smoothing based on deep learning for CNC machine tools.

Sci Rep

January 2025

College of Intelligent systems Science and Engineering, Harbin Engineering University, Harbin, 150006, China.

Most of toolpaths for machining is composed of series of short linear segments (G01 command), which limits the feedrate and machining quality. To generate a smooth machining path, a new optimization strategy is proposed to optimize the toolpath at the curvature level. First, the three essential components of optimization are introduced, and the local corner smoothness is converted into an optimization problem.

View Article and Find Full Text PDF

In response to the rotary ploughing equipment in the stubble land to implement protective operations, the stubble is large in number and strong in toughness, not easy to crush, resulting in rotary ploughing equipment to produce entanglement and increased resistance to rotary ploughing and other issues. In this study, researchers designed a bionic rotary tillage blade (B-RTB) based on the bionic structural equations of the Marmota claw. A straw-soil complex shear performance test was conducted to investigate the effect of straw on soil shear strength.

View Article and Find Full Text PDF

With the development of nanotechnology, nano-functional units of different dimensions, morphologies, and sizes exhibit the potential for efficient microwave absorption (MA) performance. However, the multi-unit coupling enhancement mechanism triggered by the alignment and orientation of nano-functional units has been neglected, hindering the further development of microwave absorbing materials (MAMs). In this paper, two typical ZIF-derived nanomaterials are self-assembled into two-dimensional ordered polyhedral superstructures by the simple ice template method.

View Article and Find Full Text PDF