614 results match your criteria: "College of Materials and Energy[Affiliation]"
Angew Chem Int Ed Engl
January 2025
South China Agricultural University, College of Materials and Energy, CHINA.
Carbon-based perovskite solar cells (C-PSCs) have the advantages of high stability and low cost, but their mean efficiency has become an obstacle to commercialization. Defects, which are widely distributed on the surface and bulk of films, are an important factor in C-PSCs for low efficiency. The conventional post-treatment method through forming a low-dimensional (LD) perovskite layer usually fails in manipulating the bulk defects.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
UV-curable bio-based resins are widely used in the UV curing field. However, the current UV-curable bio-based resins for the application of nail polish still have the problems of too high viscosity and insufficiently excellent mechanical properties. In this study, a soybean oil-based acrylate photosensitive resin is synthesized by using epoxidized soybean oil as a raw material and reacting it with acrylic acid.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China.
We report herein a robust enantioselective ring opening coupling of oxabenzonorbornadienes via Pd(II)-catalyzed domino cyclization of alkynylanilines, which features the formation of three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereoselectivity and a broad substrate scope. The good functional group tolerance of this domino desymmetrization strategy enables efficient late-stage transformation of natural product-derived alkynylanilines. The resulting indolated dihydronaphthols could serve as a valuable platform to streamline the diversity-oriented synthesis of other valuable enantioenriched tetrahydronaphthalene derivatives.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
Cellulose biocomposites have emerged as attractive alternatives to fossil-based plastics because of their excellent renewability and biodegradability; however, their water resistance and mechanical properties remain challenging. Herein, a cellulose- containing bioplastic with high a reinforcement content, water stability, and toughness is reported. Lignin-containing cellulose nanofibers (LCNF) were prepared by pretreating eucalyptus wood powder with a deep eutectic solvent and high-pressure homogenization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Given the limitations of single-function electromagnetic wave-absorbing materials (EWAMs) in meeting the evolving demands of complex usage scenarios, there is a growing need for structure-function integrated composites that offer a combination of microwave absorption, human monitoring, and thermal insulation. This study successfully synthesized two-dimensional (2D) TiCT MXene via selective etching of Al from the TiAlC MAX phase. By introducing MXene into a composite of hydroxylated CoFeO nanoparticles (-CFO NPs) and bacterial nanocellulose (BNC) to modulate the electromagnetic performance of the EWAMs.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
The synthesis of nanomaterials from renewable resources has emerged as an environmentally friendly alternative. This approach helps to reduce the use of chemical fertilizers in agricultural production, further reducing the potential harm to the ecosystem and effectively reducing the burden on the environment. In this work, we synthesized derived carbon dots (CDs) using the microwave hydrothermal method (RR-CDs) and the electrolytic oxidation method (GRR-CDs), and the results showed that RR-CDs had a wider ultraviolet absorption range and emitted blue fluorescence.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China.
Isocyanate-free polyurethane adhesives have attracted considerable attention as a promising environmentally friendly alternative. However, their progress has been hindered by insufficient bonding performance and weak solvent resistance, as well as the laborious synthesis processes involved. Herein, we successfully synthesized a high-performance lignin-based non-isocyanate adhesives (LNIPUs-G) through a one-pot strategy that combines the polycondensation of carbonate groups with polyether amines and aldehyde-amine chemistry.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
Interface engineering strategies passivate defects on the polycrystalline perovskite film surface and improve the stability of corresponding perovskite solar cells (PSCs). However, a single interface engineering step can result in restricted benefits on various occasions. Therefore, an appropriate additional modification step can be necessary to synergistically improve the device performance.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Adv Sci (Weinh)
November 2024
Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
In the realm of neural regeneration post-spinal cord injury, hydrogel scaffolds carrying induced neural stem cells (iNSCs) have demonstrated significant potential. However, challenges such as graft rejection and dysfunction caused by mitochondrial damage persist after transplantation, presenting formidable barriers. Tacrolimus, known for its dual role as an immunosuppressant and promoter of neural regeneration, holds the potential for enhancing iNSC transplantation.
View Article and Find Full Text PDFChem Sci
December 2024
Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
Covalent organic frameworks (COFs) have emerged as highly promising platforms for photocatalytic water splitting. However, exploring the structure-activity relationships in different COF systems remains challenging. In this study, three donor-imine-donor (D-I-D) COFs as relatively pure model materials were carefully selected to investigate the effect of protonation and conjugation on the mechanism of photocatalytic H evolution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China.
Natural protein-protein communications, such as those between transcription factors (TFs) and RNA polymerases/ribosomes, underpin cell-free biosensing systems operating on the transcription/translation (TXTL) paradigm. However, their deployment in field analysis is hampered by the delayed response (hour-level) and the complex composition of in vitro TXTL systems. For this purpose, we present a de novo-designed ligand-responsive artificial protein-protein communication (LIRAC) by redefining the connection between TFs and non-interacting CRISPR/Cas enzymes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
Hydrogen-bonded organic frameworks (HOFs) demonstrate significant potential for application in photocatalysis. However, the low efficiency of electron-hole separation and limited stability inhibit their practical utilization in photocatalytic hydrogen evolution from water splitting. Herein, the novel dual-pyrene-base supramolecular HOF/COF 2D/2D S-scheme heterojunction between HOF-HTBAPy (Py-HOF, HTBAPy represents the 1,3,6,8-tetrakis (p-benzoic acid) pyrene) and Py-COF was successfully established using a rapid self-assembly solution dispersion method.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, P. R. China.
Hybrid wood fiber/plastic composites offer a high-value-added utilization for agroforestry waste, which also providing a promising solution for reducing white pollution. However, the interface incompatibility between natural wood fibers and polymers significantly impairs the mechanical properties of the composites. Herein, a straightforward procedure is proposed to solve this problem, involving the removal of low-thermal-stability hemicellulose from wood fibers by hydrothermal pretreatment, followed by compositing with polyamide to produce hydrothermally treated wood fiber/polyamide composites (HWPACs).
View Article and Find Full Text PDFFood Chem
February 2025
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, PR China. Electronic address:
Improper pesticide use induces oxidative stress and disrupts detoxification systems in plants. We synthesized CDs with cascading nanozyme activities to mitigate phytotoxicity in lettuces under imidacloprid (IMI) stress. CDs exhibit superoxide dismutase-like (SOD-like) and peroxidase-like (POD-like) activities.
View Article and Find Full Text PDFBioorg Chem
December 2024
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. Electronic address:
In recent years, the pace of novel antibiotic development has been relatively slow, intensifying the urgency of the antibiotic resistance issue. Consequently, scientists have turned their attention to enhancing antibiotic activity by coordinating antibiotics with metal elements. This study designs and synthesizes three novel antibacterial copper complexes based on Gatifloxacin.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, UB8 3PH, UK.
An energy-intensive and chemical-consuming pretreatment of bamboo is often required to develop its high-performance composites. This study is to evaluate a fungal and enzymatic pretreatment as a sustainable surface modification approach towards high-strength bamboo biocomposites based on D. sinicus.
View Article and Find Full Text PDFAnal Chem
November 2024
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
The colorimetric point-of-care test (POCT) offers a rapid and efficient method for detecting specific targets in real samples. However, traditional colorimetric methods often rely on complex signal amplification techniques or electronic devices to enhance detection sensitivity, which can inadvertently increase both cost and time, thus contradicting the fundamental goals of visual detection methods. Here, we presented a distance-based fluorescent immunosensor that utilized a gas-producing nanozyme for continuous gas production reaction as a signal.
View Article and Find Full Text PDFMolecules
October 2024
Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning 530007, China.
A novel elastomer-modified multicomponent, multiphase waste-sourced biocomposites, was prepared for converting waste biomass and plastic into value-added products. The effects of blending elastomer-olefin block copolymer (OBC) and maleic anhydride (MAH), and divinylbenzene (DVB) co-grafting of recycled polypropylene (rPP) matrix on the adhesion interface, structure, and properties of high wood flour-filled (60 wt.%) composites were thoroughly investigated.
View Article and Find Full Text PDFBiosensors (Basel)
October 2024
College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Sci Rep
October 2024
College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
This study investigates the mechanical, thermal, and water absorption properties of high-density polyethylene (HDPE) composites filled with barley straw and varying amounts of waste rubber. The research aims to develop sustainable materials that repurpose agricultural and industrial waste while addressing resource scarcity and waste management challenges. Composites were prepared using a twin-rotor mixer and hydraulic press, with waste rubber content varying from 0 to 20 wt%.
View Article and Find Full Text PDFWater Res
January 2025
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
The effectiveness of electrochemical reductive defluorination is impeded by the low environmental concentrations of per- and polyfluoroalkyl substances (PFASs) and the robust nature of C - F bonds. In this work, we investigate the zeolitic imidazolate framework-67 (ZIF-67) as a promising catalyst for PFASs remediation. We show that ZIF-67 hold promise for simultaneous adsorption and reductive defluorination of 2-(trifluoromethyl) acrylic acid (TFMAA).
View Article and Find Full Text PDFChem Sci
October 2024
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University Guangzhou 510642 P. R. China
J Agric Food Chem
December 2024
National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, P. R. China.
Developing a targeted nanopesticide to control the vascular disease of banana in agriculture is crucial to improve pesticide utilization. In this study, according to the degree of functionalization, three γ-aminobutyric acid (GABA)-decorated nanocarriers (PSI-GABA, PSI-GABA, and PSI-GABA) were constructed for smart delivery of nonsystemic fungicide in banana phloem tissues. Fludioxonil (Flu) was loaded in nanocarriers to form Flu@PSI-GABA nanoparticles with a core/shell structure for control of banana wilt disease.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China. Electronic address:
Molecular design of small-molecule inhibitors targeting programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway has been recognized as an active research area by the clinical success of cancer immunotherapy. In recent years, using machine learning (ML) methods to accelerate drug design have been confirmed. However, the black box character of ML methods makes model interpretation and ligands optimization obscured.
View Article and Find Full Text PDF