20,333 results match your criteria: "College of Materials[Affiliation]"

FEMC-deuterogenic artificial solid electrolyte interphase boosts high-performance sodium-ion batteries.

Chem Commun (Camb)

January 2025

Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China.

A NaF-rich composite artificial interphase is generated relying on a simple chemical reaction by regulating methyl 2,2,2-trifluoromethyl ester reactivity, which can promote rapid ion transport and effectively inhibit dendrite growth in carbonate electrolytes. The assembled NaF@Na‖NaV(PO) full cell attains a long lifespan of 4000 cycles at 5C with 95% capacity retention, and a high specific capacity of 80.8 mAh g at 30C.

View Article and Find Full Text PDF

Erbium: key to simultaneously achieving superior temperature-stability and high magnetic properties in 2 : 17-type permanent magnets.

Mater Horiz

January 2025

College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China.

To address the demands of rapidly advancing precision instruments requiring higher efficiency and miniaturization, permanent magnets must exhibit exceptional energy density, temperature stability, high magnetic energy product [()], and adequate coercivity (). Herein, we design rare earth Er-based magnets (2 : 17-type Er-magnets) with a composition of (Er, Sm)(Co, Fe, Cu, Zr). Erbium-based compounds (ErCo) offer a unique combination of temperature compensation and high saturation magnetization compared to other heavy rare earth elements, resulting in 2 : 17-type Er-magnets with superior temperature stability in and ().

View Article and Find Full Text PDF

Template-Thermally Induced Phase Separation-Assisted Microporous Regulation in Poly(lactic acid) Aerogel for Sustainable Radiative Cooling.

Biomacromolecules

January 2025

National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.

Herein, an eco-friendly and degradable poly(lactic acid) aerogel was prepared by combining a poly(ethylene glycol) template material with thermally induced phase separation. Due to the tailored pore size introduced by the template material, the aerogel exhibits high solar reflectance (92.0%), excellent thermal emittance (90.

View Article and Find Full Text PDF

Fiber-based artificial muscles are soft actuators used to mimic the movement of human muscles. However, using high modulus oxide ceramics to fabricate artificial muscles with high energy and power is a challenge as they are prone to brittle fracture during torsion. Here, a ceramic metallization strategy is reported that solves the problem of low torsion and low ductility of alumina (AlO) ceramics by chemical plating a thin copper layer on alumina filaments.

View Article and Find Full Text PDF

Metallic Zn is a promising anode for high-safety, low-cost, and large-scale energy storage systems. However, it is strongly hindered by unstable electrode/electrolyte interface issues, including zinc dendrite, corrosion, passivation, and hydrogen evolution reactions. In this work, an in situ interface protection strategy is established by turning the corrosion/passivation byproducts (zinc hydroxide sulfates, ZHSs) into a stable hybrid protection layer.

View Article and Find Full Text PDF

Unveiling the role of NiFeM hydroxide (M = Pt, Ru, Ir, Rh) cocatalysts for robust H production in photocatalytic water splitting.

Chem Commun (Camb)

January 2025

Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, China.

In this study, the NiFe-LDH doped with different Pt group metals (Pt, Ru, Ir, Rh) was prepared as a cocatalyst for photocatalytic H production over g-CN. It is found that the doped NiFe-LDH loaded g-CN generally displays higher photocatalytic activity than the raw NiFe-LDH modified one, where the NiFeRu-LDH loaded g-CN shows the optimal H evolution rate of 77.4 μmol h, about 5.

View Article and Find Full Text PDF

Carbon black (CB) modification to achieve both homogeneous dispersion and strong interfacial interactions is a challenging subject for high-performance tread rubber composites. The effect of modification on CB surface characteristics is difficult to analyze experimentally, resulting in an uncomprehensive knowledge of the factors influencing interfacial interactions. In this study, 4,4'-diaminodiphenyldisulfide (APDS) was utilized to modify CB.

View Article and Find Full Text PDF

Highly bright perovskite light-emitting diodes enabled by retarded Auger recombination.

Nat Commun

January 2025

Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.

One of the key advantages of perovskite light-emitting diodes (PeLEDs) is their potential to achieve high performance at much higher current densities compared to conventional solution-processed emitters. However, state-of-the-art PeLEDs have not yet reached this potential, often suffering from severe current-efficiency roll-off under intensive electrical excitations. Here, we demonstrate bright PeLEDs, with a peak radiance of 2409 W sr m and negligible current-efficiency roll-off, maintaining high external quantum efficiency over 20% even at current densities as high as 2270 mA cm.

View Article and Find Full Text PDF

A mechanically robust chitosan-based macroporous foam for sustainable Se(IV) elimination from wastewater.

Carbohydr Polym

March 2025

College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; College of Chemical Engineering and Technology, Yantai Nanshan University, Yantai 265713, China. Electronic address:

The contamination of water resources by selenium (Se), particularly in the highly toxic Se(IV) oxidation state, poses a significant environmental and public health concern due to its detrimental impacts on humans and aquatic ecosystems. In this work, we report a novel composite foam (CFC) by incorporating chitosan (CS), cellulose nanofibers (CNF) and iron oxyhydroxide (FeOOH) nanoparticles through a one-pot fabrication process. The CFC foam features a three-dimensional porous structure, conferring both exceptional mechanical strength and superior adsorption performance for Se(IV), with a maximum equilibrium adsorption capacity of 90 mg/g achieved within 3 h.

View Article and Find Full Text PDF

Templating effect of monoglycerides in controlling the spatial distribution of solid fat crystals within double emulsions.

Food Chem

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:

The spatial distribution of fat crystals significantly impacts the stability and digestion properties of emulsions. This study investigated the templating effect of monoglycerides in controlling the spatial distribution of solid fat crystallization within double emulsions. Double emulsions were formulated with glyceryl monostearate (GMS), glyceryl monolaurate (GML), glyceryl monooleate (GMO), beeswax (BW), glyceryl distearate (GDS), and glyceryl tristearate (GTS) in the oil phase.

View Article and Find Full Text PDF

Effects of Silk Fibroin Hydrogel Degradation on the Proliferation and Chondrogenesis of Encapsulated Stem Cells.

Biomacromolecules

January 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.

Silk fibroin (SF) hydrogels are widely used in three-dimensional (3D) cell culture and tissue repair. Despite their importance, few studies have focused on regulating their degradation and further revealing the effects of the degradation process on encapsulated cell behaviors. Herein, SF hydrogels with equivalent initial properties and different degradation rates were prepared by adjusting the ratios between the hydrogel-encapsulated normal SF microspheres (MS) and enzyme-loaded SF microspheres (MS).

View Article and Find Full Text PDF

Injectable, Biodegradable and Photothermal Hydrogel with Quorum Sensing Inhibitory Effects for Subcutaneous Fungal Infection Treatment.

ACS Appl Mater Interfaces

January 2025

Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Owing to the high invasion depth and easy formation of biofilms, the treatment of subcutaneous fungal infection is intractable and challenging. Herein, we report an injectable and biodegradable hydrogel with bactericidal, quorum sensing inhibition and antioxidant activities for the in situ treatment of subcutaneous fungal infection. The hydrogel (BEPE) was constructed by irradiating mixed bovine serum albumin (BSA), ε-polylysine and epigallocatechin gallate (EGCG)-loaded mesoporous polydopamine (PDA) under near-infrared (NIR) light.

View Article and Find Full Text PDF

Self-powered Wraparound (Abaxial) Droplet Deposition via a Superhydrophobic Surface Aid.

J Agric Food Chem

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Future Technology College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.

Many diseases and pests are fond of the backs of leaves, making wraparound deposition essential for enhancing agrochemical utilization and minimizing environmental hazards. We present a superhydrophobic surface decorated with fluorinated-SiO nanoparticles on the adaxial (front) side, improving sprayed droplet wraparound behaviors and achieving a 10-fold increase in abaxial (backside) deposition without using an electrostatic sprayer. Solid-liquid contact electrification boosts the positive charge-to-mass ratio of rebound spraying from 17 to 454 nC g, with the abaxial surface acquiring opposite electric charges at kilovolt-level voltages.

View Article and Find Full Text PDF

Triple circularly polarized luminescence of phenylalanine-based supramolecular gels regulated by kinetic and thermodynamic assembly pathways.

Chem Commun (Camb)

January 2025

State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.

A single phenylalanine-based gelator can self-assemble into various chiral nanostructures with triple circularly polarized luminescence (CPL). Its supramolecular assembly and CPL emission are found to be dependent on the kinetic and thermodynamic pathways. This work provides new insight into the regulation of CPL-active functional materials.

View Article and Find Full Text PDF

N-heterocyclic carbene (NHC)-based phosphorescent iridium complexes have attracted extensive attention due to their good optical properties and high stability in recent years. However, currently reported NHC-based iridium complexes can easily achieve emission of blue, green, or even ultraviolet light, while emission of red or deep-red light is relatively rare. Here, we report a new family of NHC-based deep-red iridium complexes (Ir1, Ir2, Ir3, and Ir4) featuring three-charge (0, -1, -2) ligands.

View Article and Find Full Text PDF

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

The transformation of graphite into diamond (2-10 nm) at ordinary pressure by monodispersed Ta atoms was recently reported, while the effects of Ta concentration on the transition process remain obscure. Here, by regulating the Ta wire treatment time, as well as the annealing time and temperature, larger diamond grians (5-20 nm) are successfully synthesized, and the transition process of graphite to diamond is revealed to vary with Ta concentration. Specifically, short Ta wire treatments (5-10 min) induce graphite to form a "circle" structure and transforms into diamond directly after annealing.

View Article and Find Full Text PDF

Recent advances in bacterial outer membrane vesicles: Effects on the immune system, mechanisms and their usage for tumor treatment.

J Pharm Anal

December 2024

Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.

Tumor treatment remains a significant medical challenge, with many traditional therapies causing notable side effects. Recent research has led to the development of immunotherapy, which offers numerous advantages. Bacteria inherently possess motility, allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment, thus influencing the efficacy of immunotherapy.

View Article and Find Full Text PDF

High-temperature reduction of TiO causes the gradual formation of structural defects, leading to oxygen vacancy planar defects and giving rise to Magnéli phases, which are substoichiometric titanium oxides that follow the formula Ti O, with 4 ≤ ≤ 9. A high concentration of defects provides several possible configurations for Ti and Ti within the crystal, with the variation in charge ordered states changing the electronic structure of the material. The changes in crystal and electronic structures of Magnéli phases introduce unique properties absent in TiO, facilitating their diverse applications.

View Article and Find Full Text PDF

Toward high-performance rechargeable magnesium batteries with a CuSe-CTAB nanoparticle cathode and Mg[B(HFIP)]/DME electrolyte.

Chem Commun (Camb)

January 2025

College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.

Developing advanced cathode materials effectively enhances the electrochemical performance of rechargeable magnesium batteries (RMBs). Herein, we designed a CTAB-assisted hydrothermal method to construct CuSe nanoparticles as the cathode and Mg[B(HFIP)]/DME as the electrolyte shows high specific capacity and great cycling performance in RMBs.

View Article and Find Full Text PDF

Quantum Dot Luminescence Microspheres Enable Ultra-Efficient and Bright Micro-LEDs.

Adv Mater

January 2025

Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China.

Quantum dot (QD)-converted micrometer-scale light-emitting diodes (micro-LEDs) are regarded as an effective solution for achieving high-performance full-color micro-LED displays because of their narrow-band emission, simplified mass transfer, facile drive circuits, and low cost. However, these micro-LEDs suffer from significant blue light leakage and unsatisfactory electroluminescence properties due to the poor light conversion efficiency and stability of the QDs. Herein, the construction of green and red QD luminescence microspheres with the simultaneously high conversion efficiency of blue light and strong photoluminescence stability are proposed.

View Article and Find Full Text PDF

Electrochromic Fabric Device Based on Lamellar Polyaniline through Inkjet Printing.

Macromol Rapid Commun

January 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Flexible electrochromic devices (FECD) have been widely applied in smart displays, wearable devices, and other fields, however, the synchronous improvement of electrochromic performance and flexibility is still a challenge. In this paper, a fabric-based FECD with "side-by-side" structure is designed and constructed through inkjet printing. The polyaniline nanosheets with good dispersion are used as ink and electrochromic material, and the self-developed semi-solid electrolyte based on polyvinyl alcohol serves as gel electrolyte.

View Article and Find Full Text PDF

Author Correction: A bioabsorbable mechanoelectric fiber as electrical stimulation suture.

Nat Commun

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China.

View Article and Find Full Text PDF

One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China. Electronic address:

It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent.

View Article and Find Full Text PDF

Electrochemical tests combined with surface characterization techniques were used to investigate the corrosion evolution of passivated Q355B steel under the dual action of pH and chloride. The results show that the Q355B passivation film in simulated concrete pore solution is the amorphous oxide layer, and pH and Cl have closely coupled effects on Q355B corrosion. Meanwhile, the impact of pH is more significant: the decrease in pH shifts from pitting to uniform corrosion.

View Article and Find Full Text PDF