4 results match your criteria: "College of Life Science Zhejiang University[Affiliation]"

Leaf functional traits of from different environments in eastern China.

Plant Environ Interact

August 2024

Key Laboratory of Subtropical Forest Biodiversity Conservation, State Forestry Administration, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment Nanjing Forestry University Nanjing China.

Functional traits are important in understanding how plants respond and adapt to their immediate environment. is a highly endangered arbor species found throughout eastern China, primarily inhabiting hillsides and valleys, yet, little is known about the variation in leaf traits across these environments. In the present study, we tested this by comparing leaf surface area, leaf weight, leaf length, leaf symmetry and leaf mass per unit area, as well as the relationship between leaf traits and environmental factors and the scaling relationship between leaf surface area versus leaf dry mass.

View Article and Find Full Text PDF

The CCR4-NOT complex is a major mRNA deadenylase in eukaryotes, comprising the catalytic subunits CNOT6/6L and CNOT7/8, as well as CNOT4, a regulatory subunit with previously undetermined functions. These subunits have been hypothesized to play synergistic biochemical functions during development. knockout male mice have been reported to be infertile.

View Article and Find Full Text PDF

In order to explore how plant autotoxicity changes with climate warming, the autotoxicity of P. schrenkiana needles' water extract, organic extract fractions, and key allelochemical DHAP was systemically investigated at the temperature rising 2 and 4°C based on the data-monitored soil temperature during the last decade in the stage of Schrenk spruce regeneration (seed germination and seedling growth). The results showed that the criterion day and night temperatures were 12°C and 4°C for seed germination, and 14°C and 6°C for seedling growth, respectively.

View Article and Find Full Text PDF

Pseudomonas sp. strain DY1 was newly isolated from soil with rotten wood and identified as a member of the genus Pseudomonas based on 16S rDNA and biochemical tests. Acid Black 172, a water soluble Cr-complex dye, was then selected as a model dye to investigate the decolorisation ability of the strain.

View Article and Find Full Text PDF