6 results match your criteria: "College of Forestry Gansu Agricultural University Lanzhou China.[Affiliation]"
Global climate change and agricultural practices have increased atmospheric nitrogen (N) deposition, significantly affecting the nitrogen cycling process in grasslands. The impact of different N forms on key soil enzyme activities involved in N nitrification, particularly in the saline-alkali grasslands of the Hexi Corridor, using natural grassland as a control (CK) and adding three N treatments: inorganic N (IN), organic N (ON) and a mixed N treatment (MN, with a 4:6 ratio of organic to inorganic N). Our study assessed the effects of these N forms on soil properties and enzyme activities crucial for N cycling.
View Article and Find Full Text PDFCharacterizing variation and association of plant traits is critical for understanding plant adaptation strategies and community assembly mechanisms. However, little is known about the leaf trait variations of desert plants and their association with different life forms. We used principal component analysis, Pearson's correlation, phylogenetic independent contrasts, linear mixed model, and variance decomposition to explore the variation and association of 10 leaf traits in 22 desert plants in the arid area of northwest China.
View Article and Find Full Text PDFKnowledge of the soil organic carbon components and enzyme activities during long-term natural vegetation restoration is essential for managing the restoration of vegetation. In this study, the variations of soil organic carbon components (i.e.
View Article and Find Full Text PDFEvaluating how decomposition rates and litter nutrient release of different litter types respond to changes in water conditions is crucial for understanding global carbon and nutrient cycling. However, it is unclear how decreasing water affects litter mixture interactions for the maize-poplar system in arid regions. Here, the responses of the litter decomposition process and litter mixture interactions in the agroforestry system to changes in water conditions (control, light drought, and moderate drought) were tested.
View Article and Find Full Text PDFThe study was conducted during the growing seasons of 2013, 2014, and 2015 in the wet meadows on the eastern Qinghai-Tibet plateau (QTP) in the Gansu Gahai Wetland Nature Reserve to determine the dynamics of soil organic carbon (SOC) as affected by vegetation degradation along a moisture gradient and to assess its relationship with other soil properties and biomass yield. Hence, we measured SOC at depths of 0-10, 10-20, and 20-40 cm under the influence of four categories of vegetation degradation (healthy vegetation [HV], slightly degraded [SD], moderately degraded [MD], and heavily degraded [HD]). Our results showed that SOC decreased with increased degree of vegetation degradation.
View Article and Find Full Text PDFThe resurrection plant is widespread across Asia, southern Europe, and North Africa and is considered to be a constructive keystone species in desert ecosystems, but the impacts of climate change on this species in desert ecosystems are unclear. Here, the morphological responses of to changes in rainfall quantity (30% reduction and 30% increase in rainfall quantity) and interval (50% longer drought interval between rainfall events) were tested. Stage-specific changes in growth were monitored by sampling at the beginning, middle, and end of the growing season.
View Article and Find Full Text PDF