7,823 results match your criteria: "College of Environment[Affiliation]"

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems.

Water Res

December 2024

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.

View Article and Find Full Text PDF

Increasing pesticide diversity impairs soil microbial functions.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.

View Article and Find Full Text PDF

Microplastics (MPs) are fragments with a diameter of less than 5 mm that have been directly manufactured or formed by the degradation of plastic waste. MPs are not only prone to bioaccumulation in the environment, but they also lead to the spread of micropollutants in the environment, thereby threatening human health ecological environment. The useful detection method of MPs and understanding their abundance, characteristics and toxicity are great essential for MPs removal and control.

View Article and Find Full Text PDF

Effect of Maillard reaction on the allergenicity of crude extract of Mactra quadrangularis.

Food Res Int

January 2025

College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China. Electronic address:

Food allergy incidents resulting from the consumption of Mactra quadrangularis is frequently reported. Investigating the impact of the Maillard reaction on the allergenicity of M. quadrangularis allergens is beneficial for the development of hypoallergenic mollusks aquatic products.

View Article and Find Full Text PDF

Strong emissions and aerosol formation potential of higher alkanes from diesel vehicles.

J Hazard Mater

December 2024

College of Environment and Climate, Institute for Environmental and Climate Research, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, 51143, China.

Higher alkanes are a major class of intermediate volatile organic compounds (IVOCs) emitted by vehicles, which have been considered as important precursors of secondary organic aerosol (SOA) in urban area. Dynamometer experiments were conducted to characterize emissions from gasoline and diesel vehicles in China. Three types of higher alkanes, namely acyclic, cyclic, and bicyclic alkanes, were explicitly quantified through the novel proton transfer reaction time-of-flight mass spectrometer with NO ionization (NO PTR-ToF-MS) with time response of 1 second.

View Article and Find Full Text PDF

Enhancing electrocatalytic hydrogen evolution engineering unsaturated electronic structures in MoS.

Chem Sci

January 2025

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

The search for efficient, earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) has identified unsaturated molybdenum disulfide (MoS) as a leading candidate. This review synthesises recent advancements in the engineering of MoS to enhance its electrocatalytic properties. It focuses on strategies for designing an unsaturated electronic structure on metal catalytic centers and their role in boosting the efficiency of the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

To improve water splitting efficiency and enhance energy utilization, it is crucial to develop catalysts with excellent activity, long-term stability, and low cost. In this study, we synthesized a three-dimensional nanostructured amorphous CoMoP/NF bifunctional catalyst for both the hydrogen evolution reaction (HER) and the 5-hydroxymethylfurfural oxidation reaction (HMFOR), using a sacrificial template method. Benefiting from element doping regulation and morphology control, CoMoP/NF exhibited outstanding catalytic activity.

View Article and Find Full Text PDF

Spatiotemporal Variation Assessment and Improved Prediction Of Cyanobacteria Blooms in Lakes Using Improved Machine Learning Model Based on Multivariate Data.

Environ Manage

January 2025

Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.

Cyanobacterial blooms in shallow lakes pose a significant threat to aquatic ecosystems and public health worldwide, highlighting the urgent need for advanced predictive methodologies. As impounded lakes along the Eastern Route of the South-to-North Water Diversion Project, Lakes Hongze and Luoma play a key role in water resource management, making the prediction of cyanobacterial blooms in these lakes particularly important. To address this, satellite remote sensing data were utilized to analyze the spatiotemporal dynamics of cyanobacterial blooms in these lakes.

View Article and Find Full Text PDF

As an attractive optical/heat dynamic management technology, reversible metal electrodeposition/dissolution electrochromism (RME-EC) shows many advantages, including high optical modulation amplitude, wide modulation band, and color neutrality, but also suffers from performance degradation because of uneven dendritic metal deposition as well as the formation/accumulation of isolated metal debris. In this paper, a facile RME-EC system is established in a green and affordable aqueous electrolyte, by making good use of the nondendritic Ni-Cu codeposition. Furthermore, an in situ self-healing strategy is further established by activating the Br/Br couple of the Br-containing electrolyte to improve the EC performance.

View Article and Find Full Text PDF

PM Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner.

Toxics

December 2024

Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China.

As one of the most common air pollutants, fine particulate matter (PM) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration.

View Article and Find Full Text PDF

To date, only a few microbial community studies of cold seeps at the South China Sea (SCS) have been reported. The cold seep dominated by tubeworms was discovered at South Yungan East Ridge (SYER) offshore southwestern Taiwan by miniROV. The tubeworms were identified and proposed as sp.

View Article and Find Full Text PDF

Electrochemical recovery of zero-valent sulfur (S) from thiourea (TU) wastewater offers a promising waste-to-value strategy that expects to promote the sulfur resource cycle in water treatment but still suffer from electrode poisoning and sulfur over-oxidation. Herein, we designed a metal-free CNT electrochemical membrane for selective oxidation of thiourea and recovery of S. We found that defect sites on the carbon nanotube surface enable direct electron transfer for thiourea oxidation and may form carbon-sulfur bridge bonds, thereby facilitating the generation of S and urea.

View Article and Find Full Text PDF

The application of biodegradable chelating agents in phytoremediation is a promising approach. This study aimed to investigate the effects and roles of underlying mechanisms of water-soluble carboxymethyl chitosan (WSCC) and rhamnolipids (RLs) on the remediation of Cd-contaminated soil by Hylotelephium spectabile. WSCC and RLs mediated the growth of H.

View Article and Find Full Text PDF

New insights into microbial degradation of polyethylene microplastic and potential polyethylene-degrading bacteria in sediments of the Pearl River Estuary, South China.

J Hazard Mater

December 2024

Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China. Electronic address:

Microplastics (MPs) are widely distributed pollutants in various ecosystems, and biodegradation is a crucial process for removal of MPs from environments. Pearl River Estuary, one of the largest estuaries in China, is an important reservoir for MPs with polyethylene MPs (PE-MPs) as the most abundant MPs. Here, biodegradation of PE-MPs and the potential PE-degrading bacteria in sediments of eight major outlets of Pearl River Estuary were firstly investigated.

View Article and Find Full Text PDF

Recent Advances of the Effect of HO on VOC Oxidation over Catalysts: Influencing Factors, Inhibition/Promotion Mechanisms, and Water Resistance Strategies.

Environ Sci Technol

January 2025

Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China.

Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of HO and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of HO on VOC oxidation.

View Article and Find Full Text PDF

Manganese-modified reed biochar decreased nutrients and methane release from algae debris-contaminated sediments.

Environ Res

January 2025

Jiangsu Water Conservancy Construction Engineering Co., Ltd, Yangzhou, PR China.

Biochar is one of the ways for carbon storage, pollution control and biosolid reuse. Aquatic plant reeds are widely used in nutrient removal in wetlands and have huge biomass. Nonetheless, little is known regarding the effects of reed-based biochar on sediments.

View Article and Find Full Text PDF

Identifying key factors that control the chemical evolution of groundwater along groundwater flow direction is essential in ensuring the safety of groundwater resources in upper watersheds and lower plains. In this study, the ion ratio, multivariate statistics, and inverse geochemical modeling were used to investigate and explore the chemical characteristics of groundwater and factors driving the formation of groundwater components in the plain area of Deyang City, China. The chemical type of groundwater in the area was dominated by the HCO-Ca type, and the variation in groundwater chemical composition was mainly affected by water-rock interaction and human interference.

View Article and Find Full Text PDF

Catalytic reduction of nitrate to dinitrogen (N) by noble metals stands as a feasible and promising manner to address the biological and environmental issues associated with nitrate pollution; however, nitrate reduction under single noble-metal catalyzation remains substantially stuck because of the low adsorption enthalpy of noble metal toward nitrate. Tailoring the formation (crystal structure and particle size) of catalytical metal particles, coupled with a more direct electron donating pattern, provides a potential solution for the main challenge in reduction efficiency and selectivity. In this study, we assembled a Pd-based nanocomposite (Pda@EC) by subtly regulating the embedded Pd nanoparticles inside a porous substrate self-sufficient in electron donator (i.

View Article and Find Full Text PDF

This work investigated the effects of curdlan gum-guar gum composite microgels (CG microgels) as a fat replacer on the gel properties, water distribution, and microstructures of pork meat batters, using techniques including rheometry, SEM, and LF-NMR. Between 55 °C and 80 °C, the addition of 30 % CG microgels enhanced the viscoelastic response of pork meat batters. Additionally, the CG microgels reduced cooking loss from 18.

View Article and Find Full Text PDF

The community dynamic alterations mechanisms of traveling plastics in the Pearl River estuary with the salinity influence.

Water Res

December 2024

College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:

Most ocean plastics originate from terrestrial emissions, and the plastisphere on the plastics would alter during the traveling due to the significant differences in biological communities between freshwater and marine ecosystems. Microorganisms are influenced by the increasing salinity during traveling. To understand the contribution of plastic on the alteration in biological communities of plastisphere during traveling, this study investigated the alterations in microbial communities on plastics during the migration from freshwater to brackish water and saltwater.

View Article and Find Full Text PDF

Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses.

View Article and Find Full Text PDF

Only a few studies have examined the effects of coronavirus disease 2019 (COVID-19) and influenza on clinical outcomes in pediatric patients. Furthermore, no meta-analysis has assessed the impact of these diseases on adverse outcomes. This study aims to compare the clinical outcomes of COVID-19 and influenza in pediatric patients.

View Article and Find Full Text PDF

The neurotoxin methylmercury in seafood threatens food safety worldwide. China has implemented stringent wastewater policies, established numerous treatment facilities and enforced rigorous water quality standards to address pollution in its waterways. However, the impact of these policies on seafood safety and methylmercury exposure remains unknown.

View Article and Find Full Text PDF

Nano-island-encapsulated cobalt single-atom catalysts for breaking activity-stability trade-off in Fenton-like reactions.

Nat Commun

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

Single-atom catalysts (SACs) have been increasingly acknowledged for their performance in sustainable Fenton-like catalysis. However, SACs face a trade-off between activity and stability in peroxymonosulfate (PMS)-based systems. Herein, we design a nano-island encapsulated single cobalt atom (Co-ZnO) catalyst to enhance the activity and stability of PMS activation for contaminant degradation via an "island-sea" synergistic effect.

View Article and Find Full Text PDF