71 results match your criteria: "College of Engineering and Management[Affiliation]"

Compact wearable microstrip antenna design using hybrid quasi-Newton and Taguchi optimization.

Sci Rep

January 2025

Department of Computer Science and Engineering, Symbiosis Institute of Technology, Symbiosis University Pune, Pune, India.

A novel approach is introduced for designing a miniaturized wearable antenna. Utilizing Taguchi's philosophy typically entails numerous experimentations runs, but our method significantly reduces these by employing a quasi-Newton approach with gradient descent to estimate process parameter ranges. This hybrid technique expedites convergence by streamlining experiments.

View Article and Find Full Text PDF

While searching for a new host suitable for near infrared (NIR) emission, we explored a new composition NaLaMgWO. The samples were prepared by solid state reaction method. X-ray Diffraction confirms crystallization of NaLaMgWO in monoclinic system.

View Article and Find Full Text PDF

We report Er emission in YAlO host, sensitized by Cr. The excitation bands of Cr at 416 and 555 nm are broad and effectively cover the region 400-600 nm. The phosphor can be useful for converting 400-600 nm radiations to infrared (IR) light around 1521 nm.

View Article and Find Full Text PDF

. Interest regarding the associated impact of leadership style on employee safety and well-being across organizational settings is on the rise. Transformational leadership forms part of the six leadership constructs with significant research-focused settings.

View Article and Find Full Text PDF

This work investigates the dynamics of the hybrid nanofluidic convective heat transfer in a permeable thermal system under the influence of multifrequency heating and a magnetic field. The geometry comprises a wavy-walled cavity filled with a water-based hybrid nanoliquid (AlO-Cu-HO) in a saturated porous medium. The finite volume approach is applied to scrutinize the hydro-thermal characteristics resulting from bottom heating and side cooling, considering various flow-controlling parameters.

View Article and Find Full Text PDF

Efficient prediction of blastocyst formation from early-stage human embryos is imperative for improving the success rates of assisted reproductive technology (ART). Clinics transfer embryos at the blastocyst stage on Day-5 but Day-3 embryo transfer offers the advantage of a shorter culture duration, which reduces exposure to laboratory conditions, potentially enhancing embryonic development within a more conducive uterine environment and improving the likelihood of successful pregnancies. In this paper, we present a novel ResNet-GRU deep-learning model to predict blastocyst formation at 72 HPI.

View Article and Find Full Text PDF

Recognizing brain activity from EEG waves is an important field of study in biomedical engineering and neuroscience. Conventional approaches usually begin with signal processing techniques to extract features from the EEG data, and then machine learning algorithms are applied to classify the data. However, the spatial resolution of these EEG signals is low, which makes it difficult to pinpoint the exact location of the neural activity source in the brain.

View Article and Find Full Text PDF

The study develops polyamine-functionalized graphene oxide-supported NiCoS nanomaterial using a metal-organic framework (MOF). This modification adds free amines and oxygen functionality to the graphene oxide electrode surface, resulting in the decrease in the 2 theta value from 11.2 to 7.

View Article and Find Full Text PDF

Detecting urea is crucial for diagnosing related health conditions and ensuring timely medical intervention. The addition of machine learning (ML) technologies has completely changed the field of biochemical sensing, providing enhanced accuracy and reliability. In the present work, an ML-assisted screen-printed, flexible, electrochemical, non-enzymatic biosensor was proposed to quantify urea concentrations.

View Article and Find Full Text PDF

In order to combat environmental pollution and the depletion of non-renewable fuels, feasible, eco-friendly, and sustainable biodiesel production from non-edible oil crops must be augmented. This study is the first to intensify biodiesel production from castor oil using a self-manufactured cylindrical stator-rotor hydrodynamic cavitation reactor. In order to model and optimize the biodiesel yield, a response surface methodology based on a 1/2 fraction-three-level face center composite design of three levels and five experimental factors was used.

View Article and Find Full Text PDF

Biofilm is a common problem associated with human health. Pathogenicity and increase in resistance of bacteria require urgent development of effective ways for the treatment of bacterial diseases. Different strategies have been developed for the treatment of bacterial infections among which nanoparticles have shown greater prospects in battling with infections.

View Article and Find Full Text PDF

Green surfactant (GS) flooding, an environmentally friendly chemical Enhanced Oil Recovery (cEOR) method, is explored in this molecular dynamics (MD) simulation study. This study evaluates the ability of ()-2-dodecanamido-aminobutanedioic as a GS for cEOR, assessing its performance with hexane (C6), dodecane (C12), and eicosane (C20) as representative oils. In the case of the bulk system, a comprehensive molecular-level investigation provides structural details such as the radial distribution function, solvent-accessible surface area, GS adsorption dynamics, diffusivity, and emulsion stability of the GS, oil, and water systems.

View Article and Find Full Text PDF

Glutamate functions as the major excitatory neurotransmitter for primary sensory neurons and has a crucial role in sensitizing peripheral nociceptor terminals producing sensitization. Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. GLS-immunoreactivity (-ir) and enzyme activity are elevated in dorsal root ganglion (DRG) neuronal cell bodies during chronic peripheral inflammation, but the mechanism for this GLS elevation is yet to be fully characterized.

View Article and Find Full Text PDF
Article Synopsis
  • - This study examines how weather factors like wind speed, humidity, and temperature affect the efficiency of dirty solar panels in Al Seeb, Oman, over a two-month period.
  • - Results showed that dust buildup significantly reduces energy output: 20.7g/m dust led to an 18% drop in power, while 41.3g/m caused a 40% reduction, highlighting the impact of cleaning frequency.
  • - Higher wind speeds decrease dust accumulation on panels, boosting energy production, while increased humidity makes dust stickier, worsening power output; optimal performance was noted at 10 m/s wind speed and specific temperature and humidity conditions.
View Article and Find Full Text PDF

Thyroid nodules are commonly diagnosed with ultrasonography, which includes internal characteristics, varying looks, and hazy boundaries, making it challenging for a clinician to differentiate between malignant and benign forms based only on visual identification. The advancement of AI, particularly DL, provides significant breakthroughs in the domain of medical image identification. Yet, there are certain obstacles to achieving accuracy as well as efficacy in thyroid nodule detection.

View Article and Find Full Text PDF

In recent trends, radiation falls under the narrowband ultraviolet-B region (305-315 nm) widely used in phototherapy lamp applications in the treatment of skin diseases. In this paper, we report a Gd-doped NaYF luminescent material synthesized for the first time using the low-temperature co-precipitation method. It crystallized into a face-centred cubic structure, as confirmed by X-ray diffraction characterization techniques and Rietveld refinement.

View Article and Find Full Text PDF

It is well-known fact that elevated lead ions (Pb), the third most toxic among heavy metal ions in aqueous systems, pose a threat to human health and aquatic ecosystems when they exceed permissible limits. Pb is commonly found in industrial waste and fertilizers, contaminating water sources and subsequently entering the human body, causing various adverse health conditions. Unlike being expelled, Pb accumulates within the body, posing potential health risks.

View Article and Find Full Text PDF

Computational biology faces many challenges like protein secondary structure prediction (PSS), prediction of solvent accessibility, etc. In this work, we addressed PSS prediction. PSS is based on sequence-structure mapping and interaction among amino acid residues.

View Article and Find Full Text PDF

Agriculture Internet of Things (AIoTs) deployments require design of high-efficiency Quality of Service (QoS) & security models that can provide stable network performance even under large-scale communication requests. Existing security models that use blockchains are either highly complex or require large delays & have higher energy consumption for larger networks. Moreover, the efficiency of these models depends directly on consensus-efficiency & miner-efficiency, which restricts their scalability under real-time scenarios.

View Article and Find Full Text PDF

Assessment of brain tumor detection techniques and recommendation of neural network.

Biomed Tech (Berl)

August 2024

Electronics and Electrical Communications Engineering Department, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.

Objectives: Brain tumor classification is amongst the most complex and challenging jobs in the computer domain. The latest advances in brain tumor detection systems (BTDS) are presented as they can inspire new researchers to deliver new architectures for effective and efficient tumor detection. Here, the data of the multi-modal brain tumor segmentation task is employed, which has been registered, skull stripped, and histogram matching is conducted with the ferrous volume of high contrast.

View Article and Find Full Text PDF

This study aims to optimize the power generation of a conventional Manzanares solar chimney (SC) plant through strategic modifications to the collector inlet height, chimney diameter, and chimney divergence. Employing a finite volume-based solver for numerical analysis, we systematically scrutinize influential geometric parameters, including collector height (h = 1.85 to 0.

View Article and Find Full Text PDF

Novel energy efficient RND inverter using quantum dot cellular automata in nanotechnology.

Sci Rep

January 2024

Department of Electronics and Telecommunication Engineering, Ajeenkya D. Y. Patil School of Engineering, Lohegaon, Pune, India.

Quantum-Dot Cellular Automata (QCA) is a promising technology for designing high-performance and efficient logic circuits, surpassing traditional Complementary Metal Oxide Semiconductor approaches. In today's digital era, the demand for digital circuits with high speed, device density, and energy efficiency is paramount. This paper focuses on the innovative Rotated Normal Cells with Displacement (RND) inverter model, employing normal and rotated cells with a 10 nm displacement through a cell interactive method.

View Article and Find Full Text PDF

Cymbopogon citratus-mediated pure aluminium oxide (Al O ) and europium (Eu)-doped Al O with different amounts of metal ion were prepared using a green synthesis method. Synthesised nanoparticles were characterised by ultraviolet (UV)-visible spectroscopy, photoluminescence (PL), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Synthesis of nanoparticles is confirmed by using UV-visible spectroscopy showing maximum absorption at 411 and 345 nm for Al O and Eu-doped Al O , respectively.

View Article and Find Full Text PDF

Non-enzymatic screen-printed chemiresistive interdigitated electrodes (SPCIE) were designed and fabricated using a low-cost screen-printing method for detection of the glucose. The interdigitated electrodes (IDE) pattern was printed using conductive graphene ink on the glossy surface of the photo paper. The proposed glossy photo paper-based SPCIE are functionalized with multi-walled carbon nanotubes-zinc oxide (MWCNTs-ZnO) nanofibers to create the chemiresistive matrix.

View Article and Find Full Text PDF

Inference of gene regulatory network (GRN) from time series microarray data remains as a fascinating task for computer science researchers to understand the complex biological process that occurred inside a cell. Among the different popular models to infer GRN, S-system is considered as one of the promising non-linear mathematical tools to model the dynamics of gene expressions, as well as to infer the GRN. S-system is based on biochemical system theory and power law formalism.

View Article and Find Full Text PDF