1,972 results match your criteria: "College of Engineering and Applied Sciences[Affiliation]"
Nat Mater
January 2025
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.
Monolithic all-perovskite tandem solar cells present a promising approach for exceeding the efficiency limit of single-junction solar cells. However, the substantial open-circuit voltage loss in the wide-bandgap perovskite subcell hinders further improvements in power-conversion efficiency. Here we develop wide-bandgap perovskite films with improved (100) crystal orientation that suppress non-radiative recombination.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008 China. Electronic address:
Photothermal therapy (PTT) utilizing cyanine dyes (Cy) and nitric oxide (NO) gas therapy via BNN6 have demonstrated significant potential in cancer treatment. However, the rapid clearance of these small molecules from the body limits their accumulation at tumor sites, thereby reducing therapeutic efficacy. To address this, we employed the acid-sensitive nanomaterial ZIF-8 as a carrier to encapsulate Cy and BNN6, creating functionalized BNN6-Cy@ZIF-8 Nanoparticles (B-C@Z NPs) for the targeted delivery and release of Cy and BNN6 at tumor sites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Laboratory of Solid-State Microstructure, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China.
Zinc-ion batteries (ZIBs) have consistently faced challenges related to the instability of the zinc anode. Uncontrolled dendrite growth, hydrogen evolution reaction (HER), and byproduct accumulation on the zinc anode severely affect the cycling life of ZIBs. Herein, inorganic-organic hybrid thin films of titanicones (Ti-based hydroquinone, TiHQ) were fabricated by molecular layer deposition (MLD) technology to modify the zinc metal anode.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Mathematics and Physics, Nanjing Tech University, Nanjing 211816, China.
We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China.
Water electrolysis suffers from electron transfer barriers during oxygen evolution reactions, which are spin-related for magnetic materials. Here, the electron transfer at the Fe_{64}Ni_{36}-FeNiO_{x}H_{y} interface is effectively accelerated when the electrode is heated to trigger the Invar effect in Fe_{64}Ni_{36} Invar alloy, providing more unoccupied orbitals as electron transfer channels without pairing energy. As a result of thermally stimulated changes in electronic states, Fe_{64}Ni_{36}/FeNiO_{x}H_{y} achieved a cascaded oxidation of the catalytic center and water.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li intercalation/deintercalation reactions.
View Article and Find Full Text PDFNano Lett
January 2025
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China.
The net charge of individual nanoparticles in nonpolar solvents plays a critical role in their intrinsic properties like charge carrier lifetime, electron transport, and interparticle interactions. However, there is a long-standing belief that the oil-dispersed nanoparticles inherently possess no net charge. This work presents an approach for directly quantifying the net charge of individual nanoparticles.
View Article and Find Full Text PDFNano Lett
January 2025
National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
Wood particle boards are massively used in construction and household products. But they often raise health and environmental concerns because of the formaldehyde-based adhesives. More sustainable and high-strength particle boards are developed on a bio-based materials or their derivatives.
View Article and Find Full Text PDFNat Commun
December 2024
College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.
Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).
View Article and Find Full Text PDFNat Commun
December 2024
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.
Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.
View Article and Find Full Text PDFMechanobiol Med
December 2024
Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA.
Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using or strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
Biological systems utilize precise spatial organization to facilitate and regulate information transmission within signaling networks. Inspired by this, artificial scaffolds that enable delicate spatial arrangements are desirable to increase the local concentration of reactants, expedite specific interactions, and minimize undesired interference. In this study, we presented an integrated biosensing nanodevice, termed TRI-HCR, in which hybridization chain reaction (HCR) probes were precisely organized on a triangular DNA origami nanostructure (TRI) with finely-tuned distance, quantity, and pattern.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China.
Topotactic transformation is an emerging strategy for synthesizing materials with exotic functional properties. In this report, instead of producing new crystals with related structures, we exploited the topotactic transformation phenomenon to spontaneously produce compositionally diverse nanostructures on the transforming substrate. The surface of magnetite nanoparticles (FeO NPs) is topotactically transformed into maghemite (γ-FeO).
View Article and Find Full Text PDFAdv Mater
December 2024
School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China.
2D transition-metal dichalcogenide (TMDC) semiconductors represent the most promising channel materials for post-silicon microelectronics due to their unique structure and electronic properties. However, it remains challenging to synthesize wide-bandgap TMDCs monolayers featuring large areas and high performance simultaneously. Herein, highly oriented WS monolayers are reproducibly synthesized through a templated growth strategy on vicinal C/A-plane sapphire wafers.
View Article and Find Full Text PDFBrain Commun
December 2024
Department of Biomedical Engineering, College of Engineering and Applied Sciences, Columbia University, New York, NY 10027, USA.
Magnetic resonance elastography has emerged over the last two decades as a non-invasive method for quantitatively measuring the mechanical properties of the brain. Since the inception of the technology, brain stiffness has been the primary metric used to describe brain microstructural mechanics. However, more recently, a secondary measure has emerged as both theoretical and experimental significance, which is the ratio of tissue viscosity relative to tissue elasticity.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China.
Using organic oxidation reactions to replace the oxygen evolution reaction is a promising approach for producing high-value organic products and hydrogen. Here, we report a photoelectrochemical benzyl alcohol oxidation system based on an α-FeO photoanode coated with a NiCo-layered double hydroxide (NiCo-LDH) cocatalyst. By adjustment of the relative content of Ni and Co in the NiCo-LDH, the optimized photoanode achieved a benzyl alcohol conversion efficiency of 99.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China.
Chemotherapeutic drugs often fail to localize efficiently to tumors when administered intravenously, causing off-target effects. This study proposes an autologous erythrocyte (ER)-anchoring strategy to improve chemotherapy efficacy and reduce side effects. Utilizing a modified hemodialysis instrument, a closed-system drug-transfer device was developed for autologous ER procurement and immunogenicity mitigation.
View Article and Find Full Text PDFLab Chip
December 2024
College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
Acoustic waves provide an effective method for object manipulation in microfluidics, often requiring high-frequency ultrasound in the megahertz range when directly handling microsized objects, which can be costly. Micro-air-bubbles in water offer a solution toward low-cost technologies using low-frequency acoustic waves. Owing to their high compressibility and low elastic modulus, these bubbles can exhibit significant expansion and contraction in response to even kilohertz acoustic waves, leading to resonances with frequencies determined and tuned by air-bubble size.
View Article and Find Full Text PDFNano Lett
January 2025
National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, P. R. China.
Transition metal oxide interfaces have garnered great attention due to their fascinating properties that are absent in their bulk counterparts. The high mobility and coexistence of superconductivity and magnetism at these interfaces remain compelling research topics. Here, we first report superconductivity in the 2DEG formed at the LaFeO/SrTiO interfaces, characterized by a superconducting transition temperature () of 333 mK and a superconducting layer thickness of 13.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.
Over the past few years, significant progress has been made in DNA origami technology due to the unrivaled self-assembly properties of DNA molecules. As a highly programmable, addressable, and biocompatible nanomaterial, DNA origami has found widespread applications in biomedicine, such as cell scaffold construction, antimicrobial drug delivery, and supramolecular enzyme assembly. To expand the scope of DNA origami application scenarios, researchers have developed DNA origami structures capable of actively identifying and quantitatively reporting targets.
View Article and Find Full Text PDFNano Lett
January 2025
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Robust bipolar devices based on exclusively ultrawide bandgap (UWBG) semiconductors are highly desired for advanced power electronics. The heterojunction strategy has been a prevailing method for fabricating a bipolar device due to the lack of effective bipolar doping in the same UWBG material. Here, we demonstrate a unique heterojunction design integrating the p-type diamond and n-type ε-GaO that achieves remarkable breakdown voltages surpassing 3000 V.
View Article and Find Full Text PDFNanophotonics
April 2024
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
High-Q resonances in metasurfaces, stemming from symmetry-protected bound states in the continuum (BICs), have proven to be effective for achieving high-performance optical devices. However, the properties associated with symmetry-protected BICs are inherently limited, as even a slight variation in the asymmetry parameter leads to a noticeable shift in the resonance location. Herein, we introduce the concept of relative shift-induced quasi-BICs (QBICs) within dimerized silicon (Si) meta-lattices (DSMs), which can be excited when a nonzero relative shift occurs, a result of in-plane inversion symmetry breaking and Brillouin zone folding within the structure.
View Article and Find Full Text PDFNature
December 2024
Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
In the quest for environmental sustainability, the rising demand for electric vehicles and renewable energy technologies has substantially increased the need for efficient lithium extraction methods. Traditional lithium production, relying on geographically concentrated hard-rock ores and salar brines, is associated with considerable energy consumption, greenhouse gas emissions, groundwater depletion and land disturbance, thereby posing notable environmental and supply chain challenges. On the other hand, low-quality brines-such as those found in sedimentary waters, geothermal fluids, oilfield-produced waters, seawater and some salar brines and salt lakes-hold large potential owing to their extensive reserves and widespread geographical distribution.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Jiangsu Physical Science Research Center, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.