1,583 results match your criteria: "College of Biotechnology and Pharmaceutical Engineering[Affiliation]"

Unveiling the potential of dendrobine: insights into bioproduction, bioactivities, safety, circular economy, and future prospects.

Crit Rev Biotechnol

January 2025

Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.

This comprehensive review aims to explore and consolidate the current knowledge on dendrobine, including its biological activities, molecular mechanisms of action, effects on various physiological processes, potential toxicity, and safety considerations, in order to unlock its full potential in various applications. Dendrobine has diverse biological effects, including anti-inflammatory, antioxidant, neuroprotective, immunomodulatory, and anticancer effects. Dendrobine also exerts neuroprotective effects by boosting neuronal survival, reducing neuroinflammation, and regulating neurotransmitter release.

View Article and Find Full Text PDF

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

Defluorinative Cyclization of Enamides with Fluoroalkyl Halides Through Two Vicinal C(sp)─F Bonds Functionalization.

Adv Sci (Weinh)

December 2024

Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.

Introducing distinctive functional groups to expand the structural diversity and improve the intrinsic properties of parent molecules has been an essential pursuit in organic chemistry. By using perfluoroalkyl halide (PFAH) as a nontraditional, readily available, ideal 1,2-difluoroalkenyl coupling partner, a defluorinative cyclization reaction of enamides for the construction of fluoroalkenyl oxazoles is first developed. The selective and controllable two-fold cleavage of vicinal C(sp)─F bonds in PFAH not only enables the introduction of a specific 1,2-difluoroalkenyl moiety with ease but also results in the functionalization of two C(sp)─H bonds of enamides without the need for metal catalyst, photocatalyst, oxidant, or light.

View Article and Find Full Text PDF

This study utilized deep learning to optimize antihypertensive peptides from whey protein hydrolysate. Using the Large Language Models (LLMs), we identified an optimal multienzyme combination (MC5) with an ACE inhibition rate of 89.08% at a concentration of 1 mg/mL, significantly higher than single-enzyme hydrolysis.

View Article and Find Full Text PDF

Electrochemical Reductive Bimolecular Cycloaddition of 2-Arylideneindane-1,3-diones for the Synthesis of Spirocyclopentanole Indane-1,3-diones.

J Org Chem

December 2024

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.

An electrochemical reductive bimolecular cycloaddition of 2-arylideneindane-1,3-diones has been reported for the synthesis of spirocyclopentanole indane-1,3-diones bearing five contiguous stereocenters with vicinal tetrasubstituted stereocenters, especially involving a quaternary carbon center, in moderate to good yields and excellent diastereoselectivities. The present protocol features mild reaction conditions, no external chemical redox reagents, excellent atom economy, and gram-scale synthesis. In addition, a mechanistic investigation indicates that the reactions proceed through a radical pathway.

View Article and Find Full Text PDF

One-Pot Depolymerization of Mixed Plastics Using a Dual Enzyme System.

ChemSusChem

December 2024

Universität Greifswald: Universitat Greifswald, Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, GERMANY.

As global plastic consumption and littering escalate, innovative approaches to sustainable waste management are crucial. Enzymatic depolymerization has emerged as a promising recycling method for polyesters via monomer recovery under mild conditions. However, current research mainly focuses on using a single plastic feedstock, which can only be derived from complex and costly plastic waste sorting.

View Article and Find Full Text PDF

Herein, UiO-66 was selected as the immobilization carrier of Rhizomucor miehei lipase (RML). After etching and hydrophobic modification, the functionalized UIO-66 (H-UIO-66-OPA) was utilized for RML immobilization and the obtained RML@H-UIO-66-OPA showed about 70 % relative activity after incubation at 60 °C, which was much better than RML (20 %). RML@H-UIO-66-OPA was used in the synthesis of 1,3-dioleic acid glycerol (1,3-DAG) and the effects of reaction conditions (temperature, enzyme addition, substrate molar ratio, and time) on 1,3-DAG yield were investigated.

View Article and Find Full Text PDF

Advancing Succinic Acid Biomanufacturing Using the Nonconventional Yeast .

J Agric Food Chem

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.

Succinic acid is an essential bulk chemical with wide-ranging applications in materials, food, and pharmaceuticals. With the advancement of biotechnology, there has been a surge in focus on low-carbon sustainable microbial synthesis methods for producing biobased succinic acid. Due to its high intrinsic acid tolerance, has gained recognition as a competitive chassis for the industrial manufacture of succinic acid.

View Article and Find Full Text PDF

Evolutionary engineering of : Crafting a synthetic methylotroph via self-reprogramming.

Sci Adv

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.

Methanol, as a non-edible feedstock, offers a promising sustainable alternative to sugar-based substrates in biochemical production. Despite progress in engineering methanol assimilation in nonmethylotrophs, the full transformation into methanol-dependent synthetic methylotrophs remains a formidable challenge. Here, moving beyond the conventional rational design principle, we engineered a synthetic methylotrophic through genome rearrangement and adaptive laboratory evolution.

View Article and Find Full Text PDF

Bioelectrochemical technology emerges as a promising approach for addressing the challenge of antibiotic residue contamination. This research innovated by incorporating in-situ self-assembled gold nanoparticles (Au-NPs) and reduced graphene oxide (rGO) into a co-cultured electroactive biofilm (EAB) of Raoultella sp. DB-1 and Shewanella oneidensis MR-1 (Au-rGO@R/S-C).

View Article and Find Full Text PDF

Mitigating toxic formaldehyde to promote efficient utilization of C1 resources.

Crit Rev Biotechnol

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China.

The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism.

View Article and Find Full Text PDF

Preparation and evaluation of novel Agriophyllum squarrosum starch nanoparticles for encapsulation of lycopene with enhanced retention rate and bioactivity during simulated in-vitro digestion.

Int J Biol Macromol

December 2024

College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China. Electronic address:

In this study, we developed novel Agriophyllum squarrosum starch nanoparticles (ASSNPs) for the encapsulation of lycopene (LYC), aiming to enhance its stability and bioactivity under adverse environmental and digestive conditions. The small-granule starch extracted from A. squarrosum seeds was processed using ionic liquids (ILs) as an effective "green" solvent, followed by a systematic treatment involving ultrasonication and pullulanase to prepare the ASSNPs.

View Article and Find Full Text PDF

Semirational Design of a UDP-Glycosyltransferase from for Efficient Biosynthesis of Rebaudioside M2.

J Agric Food Chem

December 2024

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.

Rebaudioside M2 (RebM2) is characterized as 13-[(2--β-d-glucopyranosyl-3--β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2--β-d-glucopyranosyl-6--β-d-glucopyranosyl-β-d-glucopyranosyl) ester], an isomer of rebaudioside M with a 1 → 6 sugar linkage. The product was found in the biotransformation of rebaudioside D (RebD) catalyzed by a glycosyltransferase from (UGT). Herein, guided by consensus engineering and molecular dynamics simulations, a variant UGT with enhanced activity and thermostability was obtained.

View Article and Find Full Text PDF

Biofilm-based biocatalysis for β-cyclodextrin production by the surface-display of β-cyclodextrin glycosyltransferase in Bacillus subtilis.

Sci Rep

December 2024

National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.

β-cyclodextrin (β-CD) is an important cyclic oligosaccharide, which is widely applicated in foods, environmental protection, and cosmetics, primarily prepared from enzymatic synthesis in traditional industry. However, several challenges persist, including cumbersome processes and difficulties in achieving continuous fermentation and catalysis. This research introduced a biofilm-based immobilized fermentation, integrating with enzyme catalysis system of surface display in Bacillus subtilis.

View Article and Find Full Text PDF

Biofilm-based immobilized fermentation of engineered Komagataella phaffii for xylanase production.

Bioresour Technol

November 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.

This study presented an immobilized fermentation process of engineered Komagataella phaffii with improved biofilm-forming abilities for continuous xylanase production and provided the first insights into the molecular basis of biofilm-based immobilized fermentation of K. phaffii. Overexpression of PAS_chr2-2_0178 and PAS_FragB_0067 in K.

View Article and Find Full Text PDF

Hydrogel electrolytes have received tremendous research interest in designing flexible zinc-ion secondary batteries, making them highly promising for flexible energy storage and wearable electronic devices. Herein, we report a composite hydrogel electrolyte (CHE) prepared using a fumed silica-doped gelatin hydrogel. This electrolyte is specifically designed for use in rechargeable aqueous Zn/MnO batteries (ReAZMBs).

View Article and Find Full Text PDF

Processive endoglucanases have generated significant interest due to their bifunctionality in the degradation of cellulose and low product inhibition. However, enhancing their catalytic efficiency through engineering remains a formidable challenge. To address this bottleneck, our engineering efforts targeted loop regions located in the substrate channel of processive endoglucanase EG5C-1.

View Article and Find Full Text PDF

Boosting extracellular FastPETase production in E. coli: A combined approach of cognate chaperones co-expression and vesicle nucleating peptide tag fusion.

Int J Biol Macromol

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China.

Article Synopsis
  • - Enzymatic PET recycling is a promising eco-friendly alternative to mechanical recycling, but low production levels of PET hydrolases limit its large-scale use.
  • - Researchers improved FastPETase production in E. coli by co-expressing chaperones DnaK and DnaJ from Ideonella sakaiensis, achieving up to 2.5 times more soluble enzyme than existing chaperone methods.
  • - A combined strategy of chaperone co-expression and tagging the enzyme led to over 2 g/L of FastPETase in fermentation, with the crude product showing similar effectiveness in breaking down PET as the purified enzyme.
View Article and Find Full Text PDF

Zebrafish Larvae as a Predictive Model for the Risk of Chemical-Induced Cholestasis: Phenotypic Evaluation and Nomogram Formation.

Chem Res Toxicol

December 2024

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China.

Chemical-induced cholestasis (CIC) has become a concern in chemical safety risk assessment in pharmaceutical, food, cosmetic, and industrial manufacturing. Currently, known animal and liver models are unsuitable as high-throughput screening tools due to their high cost, time-consuming, or poor screening accuracy. Herein, a cohort of chemicals validated as cholestatic hepatotoxic in humans, rodents, and liver models was established for testing.

View Article and Find Full Text PDF

Efficient bioassimilation of one-carbon (C1) feedstocks is often hindered by the toxicity of C1 substrates and/or intermediates. We compared the toxicity of several common C1 substrates/intermediates and found that formaldehyde imposes the highest toxicity on the representative bacterium . Besides causing chromosomal DNA and protein damage effects, here, we revealed that formaldehyde greatly impairs cell membranes.

View Article and Find Full Text PDF

Systematic metabolic engineering of for efficient production of phytohormone abscisic acid.

Synth Syst Biotechnol

October 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.

Abscisic acid (ABA) is an important phytohormone with diverse applications. It currently relies on the fermentation of , which suffers from limited availability of genetic engineering tools. Here, was engineered to enable biosynthesis of ABA.

View Article and Find Full Text PDF

Engineering Saccharomyces cerevisiae for continuous secretory production of hEGF in biofilm.

J Biotechnol

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China.

Human epidermal growth factor (hEGF) plays a crucial role in promoting cell growth and has various clinical applications. Due to limited natural sources and the high cost of chemical synthesis, researchers are now exploring genetic engineering as a potential method for hEGF production. In this particular study, a novel hEGF expression system was developed using Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Polycaprolactone/polylactic acid nanofibers incorporated with butyl hydroxyanisole /HP-β-CD assemblies for improving fruit storage quality.

Int J Biol Macromol

December 2024

School of Pharmaceutical Sciences, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China. Electronic address:

In this study, the inclusion complex was prepared with butyl hydroxyanisole (BHA) as the functional substance and 2-hydroxypropyl beta-cyclodextrin (HP-β-CD) as the main molecule by ultrasound mediation. The inclusion complex was mixed with polycaprolactone (PCL)/polylactic acid (PLA), and nanofiber films loaded with different concentrations of BHA/HP-β-CD inclusion complex were prepared by electrospinning for fruit preservation. The scanning electron microscopy and infrared spectroscopy characterization results showed that HP-β-CD successfully embedded BHA in the cavity.

View Article and Find Full Text PDF

Background: Currently, adequate treatment and prognostic prediction means for Hepatocellular Carcinoma (HCC) haven't entered into medical vision. Tanshinone IIA (TanIIA) is a natural product, which can be utilized as a potential treatment of HCC due to its high anti-tumor activity. However, the effect on HCC prognosis, as well as the potential targets and molecular mechanism of TanIIA still remain ambiguous.

View Article and Find Full Text PDF

Synthesis of Natural Products Using Engineered Plants and Microorganisms.

Molecules

October 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.

Microorganisms and plants, particularly medicinal herbs, are abundant sources of diverse natural products, many of which are bioactive molecules with significant pharmaceutical or health benefits, and include artemisinin [...

View Article and Find Full Text PDF