7 results match your criteria: "College of Agriculture and Bioresources - University of Saskatchewan[Affiliation]"
Plant Environ Interact
June 2024
Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology University of Dhaka Dhaka Bangladesh.
To better understand the salt tolerance of the wild rice, , root tissue-specific untargeted comparative metabolomic profiling was performed against the salt-sensitive . Under control, exhibited abundant levels of most metabolites, while salt caused their downregulation in contrast to metabolites in . Under control conditions, itaconate, vanillic acid, threonic acid, eicosanoids, and a group of xanthin compounds were comparatively abundant in .
View Article and Find Full Text PDFAnimal
July 2022
Prairie Swine Centre, Inc., Box 21057, Saskatoon S7H 5N9, SK, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada. Electronic address:
Previous work has shown that dietary supplementation with key functional amino acids (FAA) improves growth performance and immune status of disease-challenged normal birth weight (NBW) pigs. It is not known whether FAA supplementation attenuates the effects of a subsequent disease challenge or whether this response is similar in low birth weight (LBW) pigs. The objective was to determine the effects of birth weight and FAA supplementation during the postweaning period in Salmonella-challenged pigs.
View Article and Find Full Text PDFSpecies of carabid (ground) beetles are among the most important postdispersal weed seed predators in temperate arable lands. Field studies have shown that carabid beetles can remove upwards of 65%-90% of specific weed seeds shed in arable fields each year. Such data do not explain how and why carabid predators go after weed seeds, however.
View Article and Find Full Text PDFIn contrast to other pulses, chickpea has a relatively high fat content (3%-10%). This study was designed to investigate direct-expanded chickpea-sorghum extruded snacks (50:50, 60:40, and 70:30 chickpea:sorghum, w/w) with respect to: their oxidative stability and sensory properties during accelerated (55°C) and room temperature (25°C) storage; correlations between chemical markers (peroxide value and -anisidine value) and sensory data during accelerated storage; and the shelf-life of snacks extruded at the optimal expansion point as determined by a rotatable central composite design. Peroxide values and -anisidine values were in the range of 0-2.
View Article and Find Full Text PDFChickpea is a widely produced pulse crop, but requires processing prior to human consumption. Protein bioavailability and amino acid quantity of chickpea flour can be altered by multiple factors including processing method. For this reason, the protein quality of processed chickpea flour was determined using in vivo and in vitro analyses for processed chickpeas.
View Article and Find Full Text PDFAnimal
June 2019
4Department of Animal Science, School of Veterinary - Federal University of Minas Gerais,Campus Pampulha da UFMG, Belo Horizonte 31270-901, 6627,Brazil.
Heavy weight gilts commonly show signs of oestrus during the late finishing phase, which results in a period of reduced feed intake and growth rate. Immunization against gonadotropin-releasing hormone (GnRH) (IM, immunocastration) was developed for finishing boars and recently extrapolated to females. Immunocastration acts by suppressing reproductive activity and improving the growth potential.
View Article and Find Full Text PDFJ Dairy Sci
June 2012
Department of Animal and Poultry Science, College of Agriculture and Bioresources University of Saskatchewan, Saskatoon SK S7N5A8, Canada.
The objectives of this study were to reveal protein molecular structure in relation to rumen degradation kinetics and intestinal availability in combined feeds of hulless barley with bioethanol coproduct [pure wheat dried distillers grains with solubles (DDGS)] at 5 different ratios (100:0, 75:25, 50:50, 25:75, and 0:100) in dairy cattle. The parameters assessed included 1) protein chemical profiles, 2) protein subfractions partitioned by the Cornell Net Carbohydrate and Protein System, 3) in situ protein degradation kinetics, 4) truly absorbed protein supply in the small intestine (DVE), metabolizable protein characteristics and degraded protein balance (OEB), 5) protein molecular structure spectral profiles, and 6) correlation between protein molecular structure and protein nutrient profiles and metabolic characteristics. We found that 1) with increasing inclusion of wheat DDGS in feed combinations, protein chemical compositions of crude protein (CP), neutral detergent-insoluble CP, acid detergent-insoluble CP, and nonprotein N were increased, whereas soluble CP was decreased linearly; CP subfractions A, B₃, and C were increased linearly, but CP subfractions B₁ and B₂ were decreased; truly digestible CP increased but total digestible nutrients at 1× maintenance decreased linearly; protein degradation rate was decreased without affecting potentially soluble, potentially degradable, and potentially undegradable fractions, and both rumen-degradable protein and rumen-undegradable protein were increased; by using the DVE/OEB system, the DVE and OEB values were increased from 98 to 226 g/kg of dry matter and -1 to 105 g/kg of dry matter, respectively; 2) by using the molecular spectroscopy technique, the spectral differences in protein molecular structure were detected among the feed combinations; in the original combined feeds, amide I and II peak area and ratio of amide I to II were increased linearly; although no difference existed in α-helix and β-sheet height among the combinations, the ratio of α-helix to β-sheet height was changed quadratically; 3) in the in situ 48-h residue samples, amide I and amide II peak area intensities were increased linearly and the ratio of amide I to II peak area was decreased linearly from 4.
View Article and Find Full Text PDF