1,550 results match your criteria: "Collaborative Innovation Center of Quantum Matter[Affiliation]"

High-temperature field-free superconducting diode effect in high-T cuprates.

Nat Commun

January 2025

International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.

The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex.

View Article and Find Full Text PDF

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals that laser-assisted dynamic interference in electron spectra can be experimentally observed using attosecond pulse trains, demonstrating fine interference patterns smaller than the energy of individual laser photons.
  • Theoretical simulations align with experimental findings, utilizing methods like the time-dependent Schrödinger equation and strong-field approximation to support the results.
  • Further analysis emphasizes the significance of phase variations in electron wave packets, showing that the manipulation of electron behavior in the continuum is achievable through advanced multicolor laser techniques controlled at attosecond timescales.
View Article and Find Full Text PDF

One-sided device-independent random number generation through fiber channels.

Light Sci Appl

January 2025

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China.

Randomness is an essential resource and plays important roles in various applications ranging from cryptography to simulation of complex systems. Certified randomness from quantum process is ensured to have the element of privacy but usually relies on the device's behavior. To certify randomness without the characterization for device, it is crucial to realize the one-sided device-independent random number generation based on quantum steering, which guarantees security of randomness and relaxes the demands of one party's device.

View Article and Find Full Text PDF

Non-Resonant Magnetic X-ray Scattering as a Probe of Ultrafast Molecular Spin-State Dynamics: An Ab Initio Theory.

J Chem Theory Comput

January 2025

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • Advanced techniques like high harmonic generation and X-ray free-electron lasers have enabled the study of ultrafast electron and spin dynamics on extremely short timescales.
  • The authors propose using magnetic X-ray scattering (MXS) to measure molecular spin-state dynamics and outline a protocol for simulating MXS patterns using multiconfigurational quantum chemistry.
  • The method is validated through simulations of spin-flip dynamics in the TiCl molecule, showcasing MXS's ability to detect real-time spin-state changes and infer spatial characteristics of spin density from diffraction patterns.
View Article and Find Full Text PDF

Although MoSe-based photodetectors have achieved excellent performance, the ultrafast photoresponse has limited their application as an optoelectronic synapse. In this paper, the enhancement of the rhodamine 6G molecule on the memory time of MoSe is reported. It is found that the memory time of monolayer MoSe can be obviously enhanced after assembly with rhodamine 6G exhibiting synaptic characteristics in comparison to pristine MoSe.

View Article and Find Full Text PDF

Phase Transition and Multistability in Dicke Dimer.

Phys Rev Lett

December 2024

Department of Physics and Astronomy, and Smalley-Curl Institute, Rice University, Houston, Texas 77251-1892, USA.

The hybrid quantum system of cold atomic gas and optical cavity can host many exotic phenomena including phase transitions and multistabilities. In this Letter, we investigate the effect of photon hopping between two Dicke cavities and show rich quantum phases for steady states and dynamic processes. Starting from a generic dimer system where the two cavities are not necessarily identical, we analytically obtain all possible steady-state phases and confirm their existence by numerical calculations.

View Article and Find Full Text PDF

Transmissible topological edge states based on Su-Schrieffer-Heeger photonic crystals with defect cavities.

Nanophotonics

April 2024

State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China.

Topological photonic crystals have great potential in the application of on-chip integrated optical communication devices. Here, we successfully construct the on-chip transmissible topological edge states using one-dimensional Su-Schrieffer-Heeger (SSH) photonic crystals with defect cavities on silicon-on-insulator slab. Different coupling strengths between the lateral modes and diagonal modes in photonic crystal defect cavities are used to construct the SSH model.

View Article and Find Full Text PDF

Quantum Griffiths Singularity in a Three-Dimensional Superconductor to Anderson Critical Insulator Transition.

Phys Rev Lett

November 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

Disorder is ubiquitous in real materials and can have dramatic effects on quantum phase transitions. Originating from the disorder enhanced quantum fluctuation, quantum Griffiths singularity (QGS) has been revealed as a universal phenomenon in quantum criticality of low-dimensional superconductors. However, due to the weak fluctuation effect, QGS is very challenging to detect experimentally in three-dimensional (3D) superconducting systems.

View Article and Find Full Text PDF

Revealing Ultrafast Optical Nonlinearity of Trapped Exciton Polaritons in Atomically Thin Semiconductors.

Nano Lett

December 2024

State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.

Nonlinearities are fundamental to modern optical technologies. Exciton polaritons in semiconductor microcavities provide a promising route to strong nonlinearities. Monolayer TMDs, with tightly bound excitons and strong oscillator strength, enable polaritonic phenomena under ambient conditions but face challenges from weak polariton interactions due to small exciton Bohr radius.

View Article and Find Full Text PDF

ω Meson from Lattice QCD.

Phys Rev Lett

November 2024

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany.

Many excited states in the hadron spectrum have large branching ratios to three-hadron final states. Understanding such particles from first principles QCD requires input from lattice QCD with one-, two-, and three-meson interpolators as well as a reliable three-body formalism relating finite-volume spectra at unphysical pion mass values to the scattering amplitudes at the physical point. In this work, we provide the first-ever calculation of the resonance parameters of the ω meson from lattice QCD, including an update of the formalism through matching to effective field theories.

View Article and Find Full Text PDF

Observation of perovskite topological valley exciton-polaritons at room temperature.

Nat Commun

December 2024

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, Singapore.

Topological exciton-polaritons are a burgeoning class of topological photonic systems distinguished by their hybrid nature as part-light, part-matter quasiparticles. Their further control over novel valley degree of freedom (DOF) has offered considerable potential for developing active topological optical devices towards information processing. Here, employing a two-dimensional (2D) valley-Hall perovskite lattice, we report the experimental observation of valley-polarized topological exciton-polaritons and their valley-dependent propagations at room temperature.

View Article and Find Full Text PDF

Jahn-Teller Effect on CFI Photodissociation Dynamics.

J Chem Theory Comput

December 2024

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

The Jahn-Teller (JT) effect, as a spontaneous symmetry-breaking mechanism arising from the coupling between electronic and nuclear degrees of freedom, is a widespread phenomenon in molecular and condensed matter systems. Here, we investigate the influence of the JT effect on the photodissociation dynamics of CFI molecules. Based on ab initio calculation, we obtain the three-dimensional potential energy surfaces for and states and establish a diabatic Hamiltonian model to study the wavepacket dynamics in the CFI photodissociation process.

View Article and Find Full Text PDF

Phonon dispersion of buckled two-dimensional GaN.

Nat Commun

November 2024

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.

Group-III nitride semiconductors such as GaN have various important applications based on their three-dimensional form. Previous work has demonstrated the realization of buckled two-dimensional GaN, which can be used in GaN-based nanodevices. However, the understanding of buckled two-dimensional GaN remains limited due to the difficulties in experimental characterization.

View Article and Find Full Text PDF

An integrated photocatalytic redox architecture for simultaneous overall conversion of CO and HO toward CH and HO.

Sci Bull (Beijing)

November 2024

Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Solar-driven overall conversion of CO and HO into fuels and chemicals shows an ultimate strategy for carbon neutrality yet remains a huge challenge. Herein, an integrated photocatalytic redox architecture of Zn NPs/GaN Nanowires (NWs)/Si is explored for light-driven overall conversion of CO and HO into CH and HO simultaneously without any external sacrificial agents and additives. The as-designed architecture affords a benchmark CH activity of 189 mmol g h with a high selectivity of 93.

View Article and Find Full Text PDF

AgBiS quantum dots (ABS QDs) have emerged as highly promising candidates for photovoltaic applications due to their strong sunlight absorption, nontoxicity, and elemental availability. Nevertheless, the efficiencies of ABS solar cells currently fall far short of their thermodynamic limits due in large part to sluggish charge transport characteristics in nanocrystal-derived films. In this study, we overcome this limitation by tuning the surfaces of ABS semiconductor QDs via a solvent-induced ligand exchange (SILE) strategy and provide key insights into the role of surface composition on both - and -type charge transfer doping, as well as long-range charge transport.

View Article and Find Full Text PDF
Article Synopsis
  • The shape phase transition in nuclear physics, particularly for isotopes like xenon (Xe), involves a change in structure from a γ-soft rotor to a spherical vibrator, especially around the isotopes ^{128-130}Xe.
  • In this study, researchers explore the γ-soft deformation of the isotope ^{129}Xe during ultrarelativistic collisions, using a model called iEBE-VISHNU to analyze how elliptic flow and transverse momentum relate to this deformation.
  • The authors introduce new correlators that can effectively differentiate between γ-soft and rigid triaxial deformations of ^{129}Xe during collisions, furthering the understanding of shape phase transitions in finite nuclei.
View Article and Find Full Text PDF

Optimal control theory for maximum power of Brownian heat engines.

Phys Rev E

October 2024

School of Physics, Peking University, Beijing, 100871, China.

The pursuit of achieving the maximum output power in microscopic heat engines has gained increasing attention in the field of stochastic thermodynamics. We employ the optimal control theory to study Brownian heat engines and determine the optimal heat-engine cycles in a generic damped situation, which were previously known only in the overdamped and the underdamped limits. These optimal cycles include two isothermal processes, two adiabatic processes, and an extra isochoric relaxation process at the high stiffness constraint.

View Article and Find Full Text PDF

Landau-Level Quantization and Band Splitting of FeSe Monolayers Revealed by Scanning Tunneling Spectroscopy.

Nano Lett

December 2024

State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.

Two-dimensional (2D) superconductors that reside on substrates must be influenced by Rashba spin-orbit coupling (SOC). The intriguing effect of Rashba-type SOCs on iron-based superconductors (IBSs) has remained largely a mystery. In this work, we unveil modified Landau-level spectroscopy and the intricate band splitting of FeSe monolayers through the precision of scanning tunneling spectroscopy, which unequivocally demonstrates the presence of Rashba SOC.

View Article and Find Full Text PDF

Highly Solvating Electrolytes with Core-Shell Solvation Structure for Lean-Electrolyte Lithium-Sulfur Batteries.

Angew Chem Int Ed Engl

November 2024

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.

The practical energy density of lithium-sulfur batteries is limited by the low sulfur utilization at lean electrolyte conditions. The highly solvating electrolytes (HSEs) promise to address the issue at harsh conditions, but the conflicting challenges of long-term stability of radical-mediated sulfur redox reactions (SRR) and the poor stability with lithium metal anode (LMA) have dimmed the efforts. We now present a unique core-shell solvation structured HSE formulated with classical ether-based solvents and phosphoramide co-solvent.

View Article and Find Full Text PDF

Precise p-type and n-type doping of two-dimensional semiconductors for monolithic integrated circuits.

Nat Commun

November 2024

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China.

The controllable fabrication of patterned p-type and n-type channels with precise doping control presents a significant challenge, impeding the realization of complementary metal-oxide-semiconductor (CMOS) logic using a single van der Waals material. However, such an achievement could offer substantial benefits by enabling continued transistor scaling and unprecedented interlayer interconnect technologies. In this study, we devise a precise method for two-dimensional (2D) semiconductor substitutional doping, which allows for the production of wafer-scale 2H-MoTe thin films with specific p-type or n-type doping.

View Article and Find Full Text PDF

Photodetector Based on Elemental Ferroelectric Black Phosphorus-like Bismuth.

ACS Appl Mater Interfaces

November 2024

State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, P. R. China.

Two-dimensional ferroelectric materials have emerged as a promising candidate for the development of next-generation photodetectors owing to their inherent photogalvanic effect (PGE) and strong light-matter interactions. Recently, the first-ever elemental-based ferroelectric material, black-phosphorus-like Bi (BP-Bi), has been successfully synthesized. In this work, we investigate the PGE of the monolayer (ML) BP-Bi by using ab initio quantum transport simulation.

View Article and Find Full Text PDF

Lateral Phase Heterojunction for Perovskite Microoptoelectronics.

Adv Mater

December 2024

State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China.

Article Synopsis
  • Perovskite heterojunction engineering is crucial for micro-optoelectronic devices but currently lacks efficient fabrication methods, often relying on complex techniques that are not viable for mass production.
  • A new contact diffusion lithography method is introduced to create lateral phase heterojunctions in perovskite films, enabling the simultaneous formation of different phase patterns, which can enhance device performance.
  • This innovative approach leads to the development of high-performing microscale perovskite light-emitting diodes (micro-PeLEDs) and broadens the potential applications of perovskite materials in the field of micro-optoelectronics and photonics.
View Article and Find Full Text PDF

Wafer-scale vertical injection III-nitride deep-ultraviolet light emitters.

Nat Commun

October 2024

State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

A ground-breaking roadmap of III-nitride solid-state deep-ultraviolet light emitters is demonstrated to realize the wafer-scale fabrication of devices in vertical injection configuration, from 2 to 4 inches. The epitaxial device structure is stacked on a GaN template instead of conventionally adopted AlN, where the primary concern of the tensile strain for Al-rich AlGaN on GaN is addressed via an innovative decoupling strategy, making the device structure decoupled from the underlying GaN template. Moreover, the strategy provides a protection cushion against the stress mutation during the removal of substrates.

View Article and Find Full Text PDF