213 results match your criteria: "Coimbra Chemistry Centre[Affiliation]"

Development and validation of a UV-Vis spectrophotometric method for estimation of total content of chalcone.

MethodsX

June 2025

Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, Coimbra, Portugal.

In this study, a straightforward spectrophotometric method was developed for quantifying the total content of chalcones in a sample. The method exhibits linearity, accuracy, precision, repeatability, and enables the estimation of total chalcone content in trans-chalcone equivalents for a sample diluted in carbon tetrachloride and added to antimony pentachloride. The analytical wavelength was determined to be 390 nm.

View Article and Find Full Text PDF

Organ-on-a-chip: Quo vademus? Applications and regulatory status.

Colloids Surf B Biointerfaces

January 2025

Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal. Electronic address:

Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process.

View Article and Find Full Text PDF

Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects.

Molecules

December 2024

Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.

Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation.

View Article and Find Full Text PDF

Prediction of Pt, Ir, Ru, and Rh complexes light absorption in the therapeutic window for phototherapy using machine learning.

J Cheminform

January 2025

PROMOCS Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende (CS), Italy.

Effective light-based cancer treatments, such as photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), rely on compounds that are activated by light efficiently, and absorb within the therapeutic window (600-850 nm). Traditional prediction methods for these light absorption properties, including Time-Dependent Density Functional Theory (TDDFT), are often computationally intensive and time-consuming. In this study, we explore a machine learning (ML) approach to predict the light absorption in the region of the therapeutic window of platinum, iridium, ruthenium, and rhodium complexes, aiming at streamlining the screening of potential photoactivatable prodrugs.

View Article and Find Full Text PDF

P53 and the Ultraviolet Radiation-Induced Skin Response: Finding the Light in the Darkness of Triggered Carcinogenesis.

Cancers (Basel)

November 2024

LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.

This review delves into the significant cellular and molecular responses triggered by UVR exposure in human skin, emphasizing the pivotal role of mutant p53 (mutp53) in the carcinogenic process elicited by radiation. By underlining the role of a functional p53 in safeguarding skin cells from UVR-induced damage, this work underscores the potential significance of targeting mutp53, aiming to restore its wild-type-like activity (reactivation), as a protective strategy against skin cancer (SC), particularly NMSC. Most importantly, an interesting crosstalk between p53 and its vitamin D receptor (VDR) transcriptional target is also highlighted in the suppression of skin carcinogenesis, which opens the way to promising chemopreventive strategies involving synergistic combinations between mutp53 reactivators and vitamin D.

View Article and Find Full Text PDF

Ferroptosis driven by nanoparticles for tackling glioblastoma.

Cancer Lett

December 2024

Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal. Electronic address:

Glioblastoma (GBM) is the most aggressive, malignant, and drug-resistant brain tumor. There are no effective treatment options for GBM, which usually leads to relapses that cause patients to die a few months later. Ferroptosis, a newly discovered mechanism of regulated cell death, has been identified as a tumor suppressor in solid tumors and represents an alternative to apoptosis resistance.

View Article and Find Full Text PDF

The natural products 7-hydroxycoumarin (7HC) and 7-hydroxy-4-methylcoumarin (7H4MC), known as umbelliferone and hymecromone, respectively, are one of the simplest structural examples from coumarin's family, showing several biological activities. Bovine serum albumin (BSA) is the main model protein used in laboratory experiments to characterize the biophysical capacity of potential drugs to be carried until the target in the bloodstream. Thus, the interaction BSA:7HC and BSA:7H4MC was biophysically characterized by circular dichroism (CD), steady-state, and time-resolved fluorescence techniques combined with molecular docking calculations via cross-docking approach to better correlate with the biological medium.

View Article and Find Full Text PDF

Lapachol, a natural food component, interacts with human serum albumin: Insights of its impact on the pharmacokinetics of clinically used drugs.

Int J Biol Macromol

December 2024

Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal. Electronic address:

Lapachol (LAP), a natural 1,4-naphthoquinone used in popular medicine in South America, is an antioxidant and antimicrobial compound in teas and infusions and used as a food additive; however, its interactive profile with the main protein carrier of compounds in the human bloodstream (human serum albumin, HSA) was not still characterized. Additionally, the impact of LAP in binding clinically drugs to albumin is still unknown. Thus, the present work describes the interaction HSA:LAP using different biophysical techniques, i.

View Article and Find Full Text PDF

5th International Symposium on Synthesis and Catalysis (ISySyCat2023).

Beilstein J Org Chem

October 2024

LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal.

View Article and Find Full Text PDF

Are we better together? Addressing a combined treatment of pitavastatin and temozolomide for brain cancer.

Eur J Pharmacol

December 2024

Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal. Electronic address:

Pitavastatin is commonly prescribed to treat hypercholesterolemia through the regulation of cholesterol biosynthesis. Interestingly, it has also demonstrated a great potential for treating brain tumors, although the detailed cytotoxic mechanism, particularly in glioblastoma, remains incompletely understood. This work explores the activity of pitavastatin in 2D and 3D glioblastoma models, in an attempt to provide a more representative and robust overview of its anticancer potential in glioblastoma.

View Article and Find Full Text PDF

Combining the pharmacological properties of the 1,2,3-triazole and dihydropyrimidinone classes of compounds, two small families of mono- and di(1,2,3-triazole)-dihydropyrimidinone hybrids, A and B, were previously synthesized. The main objective of this work was to investigate the potential anti-Alzheimer effects of these hybrids. The inhibitory activities of cholinesterases (AChE and BuChE), antioxidant activity, and the inhibitory mechanism through in silico (molecular docking) and in solution (STD-NMR) experiments were evaluated.

View Article and Find Full Text PDF

Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis.

Mol Neurobiol

October 2024

Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.

Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed.

View Article and Find Full Text PDF

The collision-induced rate coefficients of ortho-para conversion for the H + H reaction provide accurate information to probe the lifetime of cold environments in interstellar media. Rotationally resolved reaction probabilities are calculated at the low collision energy regime (0 < ≤ 0.3 eV) by employing the coupled three-dimensional (3D) time-dependent wave packet (TDWP) formalism in hyperspherical coordinates on a recently constructed ab initio ground adiabatic potential energy surface of H [ , , 204306] for the process H + H ( = 0, = 0-5) → H + H (' = 0, ').

View Article and Find Full Text PDF

A synthetic route to -AB-corroles combining the macrocyclic core with a hydrazone moiety, based on the reactivity of azoalkenes toward dipyrromethanes, has been established with the aim of developing a new class of photosensitizers for photodynamic therapy of lung cancer. The study of the photophysical properties of the novel macrocycles allowed the identification of photosensitizers with absorption within the phototherapeutic window and high singlet oxygen quantum yield. Relevant structure-photodynamic activity correlations were established by studying the new corroles-based photodynamic therapy (PDT) in human lung cancer cell lines (A549 and H1299).

View Article and Find Full Text PDF

Low-Protein Diets, Malnutrition, and Bone Metabolism in Chronic Kidney Disease.

Nutrients

September 2024

Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.

Chronic kidney disease (CKD) has a high prevalence worldwide, with increasing incidence in low- and middle-income countries, and is associated with high morbidity and mortality, particularly from cardiovascular disease. Protein-restricted diets are one of the most widely used non-pharmacological approaches to slow the progression of CKD and prevent associated metabolic abnormalities. However, some concerns have been raised about the long-term safety of these diets, particularly with regard to patients' nutritional status and bone and mineral disorders.

View Article and Find Full Text PDF

Old drugs, new tricks: Delivering pitavastatin-loaded nanostructured lipid carriers for glioblastoma treatment.

Colloids Surf B Biointerfaces

January 2025

Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535, Portugal. Electronic address:

Glioblastoma (GB) is the most common and lethal primary form of malignant brain cancers. Its intrinsic aggressiveness and the blood-brain barrier (BBB) are two major factors that limit the efficacy of standard therapies. In recent years, nanostructured lipid carriers (NLCs) have established themselves as a promising avenue for improving drug delivery to the brain, overcoming the challenges associated with the low drug permeability of the BBB.

View Article and Find Full Text PDF

Baguette is a globally acclaimed bakery staple, composed by a crispy crust and soft crumb, both containing Maillard reaction products (MRPs) with potential bioactivities. However, MRPs' impacts on the nutritional and health attributes of baguette, particularly in terms of cellular and biological functions, are yet to be clearly elucidated. This study chemically characterizes the crust and crumb of baguettes and investigates the influence of the Maillard reaction on baguette's nutritional profile, especially in the antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

The potential of exosomes as a new therapeutic strategy for glioblastoma.

Eur J Pharm Biopharm

October 2024

Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal. Electronic address:

Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective.

View Article and Find Full Text PDF

Coffee is one of the most consumed beverages worldwide, recognized for its unique taste and aroma and for its social and health impacts. Coffee contains a plethora of nutritional and bioactive components, whose content can vary depending on their origin, processing, and extraction methods. Gathered evidence in literature shows that the regular coffee consumption containing functional compounds (e.

View Article and Find Full Text PDF

3-Tetrazolyl-β-carboline derivatives as potential neuroprotective agents.

Bioorg Med Chem

September 2024

University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences, and Department of Chemistry, 3004-535 Coimbra, Portugal. Electronic address:

3-Tetrazolyl-β-carbolines were prepared by the Pictet-Spengler approach using a tryptophan analogue as building block, in which the carboxylic acid was replaced by the bioisosteric tetrazole group. Knowing that β-carbolines are often associated with psychopharmacological effects, the study of the 3-tetrazolyl-β-carbolines as potential neuroprotective agents against Parkinson's disease was investigated. The evaluation of neuroprotective effects against 1-methyl-4-phenylpyridin-1-ium (MPP)-induced cytotoxicity allowed to identify compounds with relevant neuroprotective activity.

View Article and Find Full Text PDF

Trilayered nanocellulose-based patches loaded with acyclovir and hyaluronic acid for the treatment of herpetic lesions.

Int J Biol Macromol

October 2024

CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:

This study focuses on the preparation of layered bacterial nanocellulose (BNC) patches for drug delivery and wound healing in the context of herpes labialis. Nanostructured patches were prepared by selective aqueous diffusion of acyclovir (ACV, antiviral drug), hyaluronic acid (HA, skin healing promoter), and glycerol (GLY, plasticizer and humectant) in the BNC network, followed by assembly into trilayered patches with ACV on the central layer of the patch (ACV) or divided between two layers (ACV), to modulate drug release. Both patches showed good layers' adhesion and thermal stability (125 °C), UV barrier properties, good static (Young's modulus up to 0.

View Article and Find Full Text PDF

Revisiting and Updating the Interaction between Human Serum Albumin and the Non-Steroidal Anti-Inflammatory Drugs Ketoprofen and Ketorolac.

Molecules

June 2024

Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.

Ketoprofen (KTF) and ketorolac (KTL) are among the most primarily used non-steroidal anti-inflammatory drugs (NSAIDs) in humans to alleviate moderate pain and to treat inflammation. Their binding affinity with albumin (the main globular protein responsible for the biodistribution of drugs in the bloodstream) was previously determined by spectroscopy without considering some conventional pitfalls. Thus, the present work updates the biophysical characterization of the interactions of HSA:KTF and HSA:KTL by H saturation-transfer difference nuclear magnetic resonance (H STD-NMR), ultraviolet (UV) absorption, circular dichroism (CD), steady-state, and time-resolved fluorescence spectroscopies combined with in silico calculations.

View Article and Find Full Text PDF

In vitro human colonic fermentation of coffee arabinogalactan and melanoidin-rich fractions.

Int J Biol Macromol

August 2024

LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal. Electronic address:

Coffee beverage is a source of dietary fiber composed by arabinogalactans, which can also be associated to proteins and phenolic compounds, originating melanoidins. Human colonic in vitro fermentations of coffee fractions, one rich in melanoidins (Mel) and the other in its parental polysaccharide arabinogalactans (AG), were performed in order to evaluate the metabolites produced by microbiota, namely short-chain fatty acids (SCFA), phenolic compounds, and bile acids. After 48 h of fermentation, a higher fermentability of the carbohydrate fraction of AG (62 %) than that of Mel (27 %) was observed, resulting in a SCFA content of 63 mM and 22 mM, respectively.

View Article and Find Full Text PDF

Therapeutic-driven framework for bioequivalence assessment of complex topical generic drug products.

Int J Pharm

August 2024

Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal. Electronic address:

Despite the continuous research on understanding how topical drugs and the skin interact, the development of a topical generic product remains a challenge. Due to their local action effect rather than systemic, establishing suitable frameworks for documenting bioequivalence between reference and test formulations is anything but straightforward. In previous years, clinical endpoint trials were considered the gold standard method to demonstrate bioequivalence between topical products.

View Article and Find Full Text PDF

In this work, multicomponent trimethoprim-based pharmaceutical solid systems were developed by mechanochemistry, using coformers from the GRAS list and other active pharmaceutical ingredients. The choice of coformers took into account their potential to increase the aqueous solubility/dissolution rate of TMP or its antibacterial activity. All the binary systems were characterized by thermal analysis, powder X-ray diffraction and infrared spectroscopy, and 3 equimolar systems with FTIR pointing to salts, and 4 eutectic mixtures were identified.

View Article and Find Full Text PDF